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Fouad, todo un señor, Iñaki, (desayunos con sabor) y Javi (¡adelante chacho!, ¡ten



h Agradecimientos

valor!). Además rondando por despachos y pasillo, encontré buena gente a porrillo. Con
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Chapter 1

Introduction

This work presents an original approach to the study of the formation and evolution of

elliptical galaxies in a cosmological context.

The first section of this introduction is concerned with the motivation for the present

work. The second section lists the theoretical issues that are encountered when analyzing

the problem. A short description of the chosen approach is then presented. Finally, the

overview section provides the reader with a bird’s view of the organization and contents

of the work itself.

1.1 Motivation

Ever since the 1930s when galaxies were confirmed as the fundamental building blocks

of the universe, their origin and evolution have remained as one of the most important

challenges at the interface between Astronomy and Cosmology. It also turned out that

they were some of the most difficult to discern mainly because of two reasons: First,

galaxies take very long to evolve, so it is impossible to study one galaxy from birth

to death. Therefore astronomers have been faced with the task of studying galaxies

by looking at snapshots. It has now turned possible for astronomers to collect a huge

number of these snapshots and maybe even more important, to see distant galaxies,

thanks to the new generation of telescopes and spectrographs.

The second reason was that, as in any physical problem, the study of galaxy forma-

tion needed some solid initial conditions in the frame of current theories. Cosmology has

dealt with this issue during the ultimate seven decades. However, the last few years have

seen the emergence of an observationally consistent cosmological model based on firm

physical ideas. The hot big bang model of the expanding universe, whose structure and

dynamics can be described by general relativity, has a number of cosmological param-

eters that are now well constrained by numerous observations: WMAP measurements

of the cosmic microwave background radiation (CMB Dunkley et al., 2009), supernova

data (Riess et al., 2007), measurements of large scale structure (Massey et al., 2007;
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Percival et al., 2007), among others have settled on a concordance model of a spatially

flat universe with matter density about 30% of critical.

This model predicts that the large scale structure galaxy distribution that we ob-

serve in galaxy surveys must have formed through gravitational collapse of the small

fluctuations left over from that earlier time. The properties of these large-scale mass

densities can be predicted from the initial conditions as observed in the CMB combined

with our understanding of gravity as described by General Relativity. Large scale stud-

ies of comprehensive surveys as SDSS (York et al., 2000) or 2dF (Folkes et al., 1999)

confirm this idea. While the theory of origin of structure at large scale is more than

promising, there are still some open questions at lower levels that the standard model

has to answer. One of them is galaxy formation where the model has to address for a

huge set of observational data available.

Actually, the amount of observational data nowadays is indeed so huge that studying

the origin and evolution of galaxies in detail encourages to focus on some particular

cases. As the term galaxy comprises a wide variety of types of galaxies with different

properties, one way to deepen into this topic during the last decades has been to try

to know how each of these different types of galaxies were formed, because sharing

the same physical properties, their formation process should experience some common

features.

From all the population of galaxy classes, elliptical galaxies are the easiest to study

and are those that show the most precise empirical regularities, some times in the form of

very tight correlations among their observable parameters (Djorgovski & Davis, 1987;

Faber et al., 1987; Caon et al., 1993; Bernardi et al., 2003a). The interest of these

regularities lies in that they may encode a lot of relevant information on the physical

processes underlying elliptical formation and evolution. All the new advances make

it possible for the first time to address meaningfully key questions about the way in

which elliptical galaxies were formed and evolved over 10 billion years of cosmic history.

When did they appear? What triggered the process of their formation? Do all form at a

single, well defined epoch or is their formation spread out in time? Were the early proto-

ellipticals similar to present-day Es? What is the connection between this population

and the physics of the early universe? And perhaps, most interestingly of all, what are

the processes that establish the observed relations between the various structural and

kinematical properties?

Self-consistent hydrodynamical simulations constitute a powerful tool to work out

these questions, since they make possible to accurately follow the evolution of the dy-

namical and thermodynamical properties of matter in the Universe. The general idea

is to solve simultaneously the gravitational and hydrodynamical evolution equations.

Therefore, they are a key tool in connecting the initial conditions offered by cosmology

and all the available data from observations. So, in some sense, they play the role of
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the laboratory experiments of astrophysics.

The main advantage of this kind of simulations is that physics is introduced at the

most general level, and the dynamical processes relevant to galaxy assembly, such as

collapse, gas infall, interactions, mergers, etc, emerge naturally, rather than by assump-

tion, and can be followed in detail. Only the subscale physics needs to be modeled.

These considerations emphasize the interest in hydrodynamical simulations as a very

convenient tool in order to understand the formation and evolution of galaxies from the

field of primordial fluctuations.

Therefore, this was the motivation for the present work: using self-consistent hy-

drodynamical simulations to build a consistent theoretical framework to interpret and

study the different observations of elliptical galaxies.

1.2 Theoretical Issues

The approach that has been outlined in the motivation section involves several fields

of knowledge. Part I of this thesis, Theoretical Framework provides an introduction

to each of these fields. This section provides an overview of the contents of Part I,

presenting short descriptions of each field and the reasons to include them.

From the moment that theoretical models gave some initial conditions it was a matter

of time that scientists started to study their evolution and compare it with observations.

The complex evolution of the primordial inhomogeneities made cosmological pure N-

Body simulations, which computed only gravitational force, a powerful tool to study

them in the non-linear regime. First attempts to use this technique in the study of the

formation of large structure started during the 70’s (Peebles, 1974; Press & Schechter,

1974; Miyoshi & Kihara, 1975; Aarseth et al., 1979), obtaining a great success and

motivating several cosmological N-body simulations all over the world.

From these first approaches up to nowadays, all the different algorithms and ideas

that this technique englobes have been continuously refined. In this sense, and first of

all, it is worth to say that simulators are in deep debt with all the incredible advances

in computer technology developed during the last decades.

Incorporation of hydrodynamics in cosmological simulations has made it possible to

study not only the gravitational formation of dark matter halos, but also the properties

of baryonic matter, and thus the formation of galaxies associated with those halos.

First self-consistent hydrodynamical simulations were done in the late 80s (Evrard,

1988; Hernquist & Katz, 1989; Navarro & White, 1994).

To date, no code has sufficient dynamic range to compute both the large scale

cosmological evolution on scales of many hundreds of megaparsecs and the formation

of stars from baryons, but physical heuristics have been successfully incorporated into

some codes to model the conversion of baryons into stars (Cen, 1992; Tissera et al.,
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1997; Thacker & Couchman, 2000). Since the beginning of this new millennium several

groups have obtained great success in modeling the formation of galaxies using self-

consistent simulations which take into account the dynamics of DM and gas, radiative

cooling, star formation and some other sub-resolution physic (Sommer-Larsen et al.,

2002; Murali et al., 2002; Meza et al., 2003; Sáiz et al., 2003; Kawata & Gibson, 2003;

Sáiz et al., 2004).

Anyway, to do a proper analysis we have not only to understand the way these

simulations technique works, its limits and advantages, but also we need to know how

to compare correctly their results with theory and observations. To this end, we need

to deepen into the available data of real elliptical galaxies to discover what it is really

known about them. Maybe even more important is how all this information was obtained

in order to be able to mimic as far as possible the same methods, facilitating the

comparison.

Furthermore, we also have to study the different models that have been proposed for

the formation and evolution of elliptical galaxies. A set of observations suggested that

ellipticals formed at higher redshift and on short timescales, in what has been called the

monolithic collapse scenario (Eggen et al., 1962; Larson, 1974; Matteucci, 2003). On

the other hand, another set of observations suggests that mergers at intermediate and

low redshift could have played an important role in the assembly of this type of galaxies

pointing to, what is called, the hierarchical scenario (White & Rees, 1978; Cole et al.,

1994; Bundy et al., 2005). These observational results are paradoxical and challenging,

making the study of the problem in connection with the global cosmological model a

clear must do and a very promising method.

1.3 Approach

Inspired by all the prior art on self-consistent hydrodynamical simulations mentioned

above, and specially by the work of Sáiz et al. (2004), we have tried to go one step further

in the study of elliptical galaxies using this method. To this end, we have worked on

obtaining both, a large sample of systems from simulations to study, to have significant

statistics, and also that the resolution of these systems would be high enough to do a

proper structural and kinematical analysis.

A critical issue regarding the code used to perform the simulations is that conser-

vation laws are accurately verified. Particularly, an appropriate numerical code must

satisfy all the conservation laws for physical quantities such as momentum, energy, or

entropy. In this thesis we have used the DEVA code (Serna et al., 2003) and its parallel

version P-DEVA which fulfills all these requirements.

As we intend to use these simulations as tools to better understand the real Universe,

it is essential to have a more or less direct way to compare between simulation outputs
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and observations. To carry out the comparison we must rely on galaxy properties which

are measurable both on the simulations outputs and in observations.

In this work, we have studied the strong correlation observed between different

structural and dynamical parameters of ellipticals. Using hydrodynamical simulations

we have arranged, in addition to the equivalent observable measurements, the 3-D stel-

lar object parameters and halo scale parameters for our elliptical-like objects. With

the information obtained from this study, we want to deepen into the origin of these

correlations, address their evolution with redshift and its implications in the formation

of elliptical galaxies.

To this end, we have first dealt with the design of all the different characteristics of

the simulations that we needed to achieve our goal of statistics and resolution. We had

to take into account that there are finite resources available, in the sense not only of

computer power but also in real time.

Once we had all the details about the simulations configured, we have built a set

of analysis tools aimed at a proper comparison with both, observational data and the-

oretical (analytical and simulations) results. As it can be seen along this work, there

are a lot of different parameters and properties of our simulated ellipticals in which we

are interested so, we needed to develop a significant amount of computer programs and

algorithms. However, the general idea behind our implementation has been to create

a solid pipeline of analysis which can be useful not only to analyze these simulations

but also the future ones. We have made its architecture highly modular, to facilitate

the inclusion of more functions and/or the improvement of older ones. To improve the

usability for beginner users, different global parameters which can be tuned readily have

been defined.

1.4 Overview

This work is organized as follows:

Part I – Theoretical Framework: Provides the groundwork for the results pre-

sented in Part III, with an introduction to each of the fields of knowledge touched

by the present work. Terms and concepts used in the results are introduced and

described. Chapter 2 gives introduction to self-consistent hydrodynamical simu-

lations. In particular we present the code we have used to run our simulations,

DEVA. Chapter 3 gives a short overview of present galaxy formation theory, models

and observational constrains.

Part II – Simulations and Tools: Includes Chapter 4 in which we present a detailed

description of the different simulations under study, how they have been analyzed

and the different technical issues concerning the study of elliptical-like object

properties.
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Part III – Results: We present the results of our study of galaxy formation using

hydrodynamical simulations divided in two separate blocks. The first one includes

Chapters 5, 6 and 7, and deeps into several kinematical and structural properties

of nearby ellipticals. The second block is concerned about the characteristics of

elliptical galaxies at younger epochs. In particular, Chapter 8 presents a study

of the evolution of the different fundamental relations of these type of galaxies

at redshift below 1.5. Finally, Chapter 9, provides some insights into elliptical

galaxies formation and evolution scenarios.

Part IV – Conclusions and Outlook: Contains the conclusions, a brief discussion

of important aspects and outlines future work.

Additionally, Appendix A contains a translation of this first chapter into Spanish.

Appendix B contains a translation into Spanish of the conclusions part. As a general

frame for this work, Appendix C summarizes the Standard Cosmological Model intro-

ducing several concepts that are used throughout this thesis. For the sake of clarity

and ease for the reader, Appendix D includes several long data tables that would be

referenced along this thesis.

Finally, some of the work that is presented in this manuscript has appeared on a set

of refereed journals (Oñorbe et al., 2005; Domı́nguez-Tenreiro et al., 2006; Oñorbe et al.,

2006; Oñorbe et al., 2007; González-Garćıa et al., 2009)1 and conference proceedings

(Oñorbe et al., 2006; Oñorbe et al., 2006, 2007; Domı́nguez-Tenreiro et al., 2008; Oñorbe

et al., 2008) in which I have participated during the development of this thesis as would

be indicated on each chapter when appropriate.

1First four articles can be found in Appendix E. Last article has been included in Section 8.5
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Chapter 2

Method: Self-Consistent

Hydrodynamical Simulations

2.1 Introduction

Structures like galaxies and clusters of galaxies are believed to have formed by am-

plification of small perturbations (Peebles, 1980; Peacock, 1999; Liddle & Lyth, 2000;

Bernardeau et al., 2002). Galaxies are highly over-dense systems. Matter density, ρ,

in galaxies is thousands of times larger than the average density, ρ̄, in the universe.

Thus in this scenario the problem of galaxy formation and the large scale distribution

of galaxies is essentially one of evolving density perturbations from small initial values

to the large values we encounter today. In this sense, advances in computer science

have brought us the possibility of making these extremely complex calculations in a

reasonable time.

The present chapter is devoted to give a general picture of the main tool used in this

thesis, the self-consistent hydrodynamical simulations. First, Section 2.2, introduces

the theoretical issues of this method and the main problems that it has to face. There-

after, in Section 2.3, we briefly examine the last advances in this topic during the past

years. In Section 2.4 a detailed description of DEVA, the code used in all our numerical

experiments, is given. Section 2.5 is the summary.

2.2 Description of the Method

Equations that describe the evolution of density perturbations in non-relativistic matter

due to gravitational interaction in an expanding Universe have been known for a long

time (Peebles, 1980). The fundamental idea is that due to the Birkhoff theorem, as long

as in a region v/c� 1 and r < horizon, Newtonian approximation continues to be a valid

framework (see Peacock, 1999, for a more detailed explanation). Then, the dynamical

equations that described the evolution of these inhomogeneities in a pressure-less and
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self-gravitating Newtonian fluid are: the equation of continuity for mass conservation

(Eq. 2.1), Euler’s equation for momentum conservation (Eq. 2.2) and Poisson’s equation

that accounts for the Newtonian gravity (Eq. 2.3). Considering that the phase-space

distribution function of the fluid is given by f(r, p, t), where r is the position and p the

momentum (p = mv), ρ is the proper mass density, ρ(r, t) =
∫
f(r, p, t)d3p, Φ is the

gravitational potential and d/dt = ∂/∂t+ v · ∇r is the usual convective derivative, then

these equations can be written as:

dρ

dt
= −∇r · (ρv) (Equation of continuity) (2.1)

dv

dt
= −∇rΦ (Euler′s equation presureless) (2.2)

∇2
rΦ = 4πGρ (Poisson′s equation) (2.3)

Here, we have written the three last equations in Eulerian coordinates, this is, they

are fixed in an inertial reference frame. The alternative approach to fluid dynamics is

to use Lagrangian coordinates, which are fixed to a given parcel of fluid but move in

space. They have the property that the Lagrangian position of a fluid element does not

change with time. In cosmology, a type of Lagrangian coordinates is used by the name

of comoving coordinates. These label observers who follow the Hubble expansion in

an unperturbed universe. In this case, comoving coordinates and physical coordinates

are related by the scale factor a(t). For a more detailed description of the underlying

cosmology and related issues as the scale factor, see Appendix C. The comoving position

~x and the physical position ~r are related by ~r(t) = a(t)~x. The comoving time coordinate

is the elapsed time since the Big Bang according to a clock of a comoving observer and

is a measure of cosmological time. Physical velocity, ~v = d~r/dt, and comoving velocity,

~u = d~x/dt, coordinates are linked by the following expression ~v = da(t)
dt ~x+ a(t)~u. ∇x is

the comoving gradient, which is related with the physical gradient as ∇r = ∇x/a(t).

It is useful to rewrite equations (2.1), (2.2) and (2.3) in comoving coordinates when

working in an expanding universe framework because it allows us to focus on perturba-

tions in density and velocity. For this purpose it is also helpful to express the density

as a first order perturbation magnitude1, ρ(r, t) = ρ0(t) + δρ(r, t), because ρ0(t) be-

haves like ρ0(t) ∝ a(t)−3 in comoving coordinates. If we also define the density contrast

δρ ≡ δρ/ρ0 we get the following relation:

ρ(x, t) = ρ0(1 + δρ) (2.4)

1Nonetheless it is important to remark that once we consider a perturbed universe, the comoving
coordinates formed by dividing the eulerian coordinates by the scale factor a(t) are no longer pure
Lagrangian because gravity will cause a non-uniform distribution of the fluid to grow increasingly
irregular. In other words, when δρ 6= 0 then x→ x(t).
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as the expression for density in comoving coordinates. From this definition and using

Eq. (2.3), the gravitational potential can be expressed as Φ(x, t) = Φ0(t) + δΦ(x, t),

where δΦ is called the peculiar gravitational potential. Therefore, equations (2.1), (2.2)

and (2.3) in comoving coordinates to first order in the perturbations (linear regime) are

written as:

δ̇ρ = −∇x[(1 + δρ)u] (Equation of continuity) (2.5)

ẍ+ 2
ȧ

a
ẋ = − 1

a2
∇xδΦ (Euler′s equation presureless) (2.6)

∇2
xδΦ = 4πGa2ρ0δρ (Poisson′s equation) (2.7)

where dot stands for d/dt and two dots for d2/dt2 and we have used the unperturbed so-

lution for Euler equation (2.6), this is, if δρ → 0 =⇒ (ä/a)x = −a−2∇xΦ0 (see Peacock,

1999, for a full demonstration). These equations can be solved analytically for a small

density contrast, and for highly symmetric situations. There are many approximate

solutions in the quasi-linear regime that are useful for understanding the evolution of

perturbations in this regime (Zel’Dovich, 1970; Gurbatov et al., 1989; Bernardeau et al.,

2002) but fail when density contrast become large (δρ � 1).

Taking into account that clusters have typical overdensities of ∼ 103 and galaxies

around ∼ 106 (Ettori et al., 2002), it seems that the use of numerical methods to

study how galaxies are assembled within a cosmological scenario from field of primordial

fluctuations is a convenient approach. The exact solution of the density field can be

performed by means of a numerical simulation, in which the density field is represented

by the sum of a set of fictious discrete points. The basic steps in this type of simulations

can be summarized as follows:

(i) implementation of initial conditions. See below for a brief discussion on initial

conditions.

(ii) Calculation of the force by solving the Poisson equation.

(iii) Update of positions and velocities of particles.

(iv) Diagnostics, e.g. tests of energy conservation.

(v) Go back to (ii) until simulation is completed.

So, numerical simulations are basically a Monte-Carlo method of solving these equations,

with the number of bodies per volume governing the accuracy of the method.

We have shown the equations that govern the motion of a pressure-less fluid. This is

valid for dark matter only simulations (often called N-Body simulations) which are very

useful to understand the large scale structure formation. However, at galactic scales,
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gas dynamic plays an important role and it needs to be taken into account for a proper

solution of the problem. In this case we have to extend the Euler equation for motion

(Eq. 2.2) to the baryons, adding a pressure term:

dv

dt
= −∇rδΦ−

∇rP
ρ

(Euler equation for baryons) (2.8)

where P is the pressure. Also the first law of thermodynamics takes a more elaborated

form, from de/dt = 0 it now stands as:

de

dt
= −P

ρ
∇r · v −

Λ(e, ρ)

ρ
(First law of thermodynamics) (2.9)

where e is the internal energy per unit mass and Λ(e, ρ) is the cooling function which

accounts for the radiative losses of baryons. Finally these five equations are closed by

an equation of state, relating the pressure, the density and the internal energy:

P = (γ − 1)ρe (2.10)

Assuming an ideal, monoatomic gas, γ equals 5/3. The simulations that introduce

baryon particles and therefore solve not only equations (2.1), (2.2), (2.3) for pressure-

less fluid but also equations (2.1), (2.3), (2.8) and (2.9) to follow the baryonic fluid, are

called hydrodynamical simulations.

The history of hydrodynamical simulations, and more generally of numerical sim-

ulations, is the search for algorithms that solve these equations, or their comoving

equivalents, as fast as possible and even more important, with enough accuracy.

2.2.1 Algorithms

The advance in numerical simulations has become possible both by the rapid growth of

computer performance and by the implementation of ever more sophisticated numerical

algorithms. We can differentiate two crucial points in hydrodynamical simulations con-

cerning numerical algorithms. First one is to compute the Poisson term, ∇Φ, a problem

that is shared with N-Body simulations. The second one is to solve the motion of the

collisional baryonic matter. These are the two bottlenecks of any hydrodynamical sim-

ulation regarding the computational cost. Here, we briefly describe how physicists have

deal with them.

Gravitational force in the Newtonian limit falls as 1/r2, hence it is a long range force

and we cannot ignore force due to distant particles. This makes the calculation of the

Poisson equation (2.3) one of the most time consuming tasks in numerical simulations.

Early simulations (White, 1976; Fall, 1978; Aarseth et al., 1979) employed the direct

summation method, also known as Particle-Particle (PP) method, for the gravitational

N-Body problem. This is, to sum directly the contributions of all individual particles
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to the gravitational potential

Φ(r) = −G
∑

j

mj

(|r − rj|2 + ε2)
1
2

(2.11)

It is important to remark that in the simulations used in astrophysics, the particles do

not represent individual dark matter or baryonic particles, but should be considered as

Monte Carlo realizations of the mass distribution, and therefore only collective, statis-

tical properties can be considered. In this kind of simulations, close encounters between

individual particles are irrelevant to the physical problem under consideration, and the

gravitational force between two particles is smoothed by introducing the gravitational

softening ε. This softening reduces the spurious two-body relaxation which occurs when

the number of particles in the simulation is not large enough to represent correctly a

collisionless fluid and in some sense, determines the spatial resolution of the simulation.

Typically, ε is chosen to be 1/20− 1/50 of the mean inter-particle separation within the

simulation.

However, the PP method scales like O(N(N−1)). Therefore one needs to bypass the

increase in computational time for large numbers of particles with a more sophisticated

treatment when calculating the forces. One option is to organize the particles in a tree-

like structure. The force of a distant group of particles can be approximated by the

force due to a single pseudo-particle located at the center of mass of the group, with

mass equal to the total mass of the group of particles (Barnes & Hut, 1986; Dehnen,

2000). This method, usually called Tree method, scales as O(NlogN). Another way

for obtaining the forces is to numerically integrate Poisson equation. The idea is to use

the Fourier transform of this equation (a simple algebraic equation) combined with Fast

Fourier Transforms (FFT). This technique demands the introduction of a grid in order

to define the density. That is why this method is usually known as the Particle-Mesh

method (PM). It also scales as O(NlogN). From these three approaches (PP, Tree and

PM) have grown several hybrid methods that combine and/or improve them: TreePM,

PPPM (also known as P3M), Adaptative P3M (AP3M), ATreePM, etc.

The methods to solve the problem of adding the baryonic matter to the simulations

have been developed in the past decades. They fall into two categories: Lagrangian

methods or particle methods, which discretize mass, and Eulerian methods or grid-based

methods, which discretize space. Eulerian methods are based on the so-called Godunov’s

scheme for solving partial differential equations. In these methods the equation of

motion for the brayon component (Eq. 2.8) is solved based on structured or unstructured

grids, representing the fluid. The conservative variables are considered as piecewise

constant over the mesh cells at each time step and the time evolution is determined by

the exact solution of the Riemann problem (shock tube) at the inter-cell boundaries. On

the other hand most of the lagrangian methods used in astrophysics are based on the
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smoothed particle hydrodynamics (SPH) algorithm (Lucy, 1977; Gingold & Monaghan,

1977; Monaghan, 1992). The basic idea of SPH is to discretize the fluid by mass elements

(e.g. particles), rather than by volume elements as in the Eulerian methods. Therefore

the fluid properties like pressure, density, temperature, etc at any point can be found by

averaging over particles in the region using a weight function W . This weight function

(or kernel) leads to the definition of an individual smoothing length, hi, for each particle,

it is normalised and collapses to a delta function if the smoothing lenght approaches

zero. This length must be adapted such that each particle has a constant number of

neighbors, leading to a constant mass resolution independent of the density of the flow.

For a finite number of particles, N , the resulting estimate of the field, 〈f(r)〉i, is then

given by:

f(ri) =

N∑
j=1

mj

ρj
f(rj)W (rij, hi, hj) (2.12)

where rij = |ri − rj|, mj is the mass of particle j, ρj is the density at the location of

particle j, and hj is the smoothing length for the j-th particle, which specifies the extent

of the averaging volume around it. As a particular case of Equation 2.12, the smoothed

estimate of the local density would be

ρ(ri) =
N∑
j=1

mjW (rij, hi, hj) (2.13)

For a complete review on different techniques and algorithms applied in N-Body

simulations and hydrodynamical simulations, see Bagla (2005); Dolag et al. (2008) and

references therein. For a more historical perspective see Yepes (2001) and Suto (2003).

2.2.2 Initial Conditions

Once we have our code prepared, we need to provide it with an initial condition or

initial configuration for all the different particles. There are two main approaches to set

the initial conditions depending on how we plan to use hydrodynamical cosmological

codes. First one is called the pre-prepared scheme where the initial conditions are

usually set from analytical models based on observations. These initial conditions try

to model situations that would have arisen along the evolution of the systems under

consideration. This kind of simulations move in a huge range of scales from planet

formation (see Mayer et al., 2004, as a recent example) up to the interaction of galaxies

(see González-Garćıa et al., 2006, and references therein). This method has proved to

be a very powerful instrument to deepen into the physics of these problems with a very

high resolution.

The other approach, which is the one employed in this thesis, is the self-consistent

or cosmological scheme. This kind of simulations use the good agreement between
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observations of the large-scale distribution of galaxies and the CMB that link the growth

of structures with a Gaussian random field of initial density fluctuations (see Appendix

C.6 for more details). The two-point correlation function or its Fourier transform, the

power spectrum contain all the statistical properties of this field. The standard ad-

hoc procedure for setting up cosmological initial conditions is described in Efstathiou

et al. (1985) and references therein. The basic (but not trivial) idea is that given an

unperturbed particle/grid distribution, any desired linear fluctuation distribution can

be in principle generated using the Zeldovich approximation.

The main advantage of this method (i.e. self-consistent simulations), is that the

physics is introduced at a very general level, and the system evolves as a consequence.

We can follow the evolution of the dynamical and hydrodynamical properties of matter

in the Universe. These simulations play a very significant role in cosmology because

they can be considered as an experiment to verify theories of the origin and evolution of

the Universe. Self-consistent gravo-hydrodynamical simulations are useful not only as

tools for evolving complex systems, these can also be used to understand which effects

play a more important role in different phases of this evolution.

Of course this technique has some difficulties. Just to mention, one of the most

important complications is the discreteness effect, this relates with the problem of sam-

pling the continuous initial density field with a discrete distribution. The other one is

the possible effect that the perturbations at scales larger than the box size and at scales

smaller than the resolution (not taken into account) can have in the specific subject of

study of the simulation. For a more detailed description on how to generate cosmologi-

cal initial conditions and how to minimize these problems see Sirko (2005); Lukić et al.

(2007); Dolag et al. (2008).

2.2.3 Additional Physics

A realistic simulation should give us, at least, the same information as the one obtained

by observations. However there are several key effects that are important in the final

result but occur in regions that have a size many orders of magnitude smaller than

the spatial resolution of the simulation. They are, for example, the radiative cooling,

the star formation, supernova explosions and a large etcetera, most of them involved

with baryonic physics. In general these effects are difficult to include as vastly different

scales of relevance are involved. As a result, much of the treatment of them has remained

phenomenological.

One of the first relevant processes that need to be added is the radiative cooling.

This is the main process leading to the condensation of gas in the matter potential

wells and consequently to star and structure formation. We have already mentioned

it above including the cooling function in equation (2.9). In standard implementations

the cooling rates are estimated, making several simplification assumptions, directly as
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a function of local gas density and temperature Λ(ρg, T ) = ρ2
gΛ(T ) (Cen, 1992; Katz

et al., 1996). However this parameterization has been improved along time and now the

methods are more complex, taking into account more physics, as the molecular cooling

or the metal dependence. See Maio et al. (2007) for a current review on this topic.

Including radiative losses in simulations however, can cause an overcooling problem.

This is, as gas cools it tends to collapse but, as cooling depends on density this can

make that a very large fraction of the baryonic component can cool down and condense.

To deal with these issues, one has to include in the code a suitable recipe to convert the

reservoir of cold and dense gas into collisionless stars. Star formation is still a really open

issue in astrophysics (McKee & Ostriker, 2007) therefore its inclusion in hydrodynamical

simulations is a matter of debate. Even first attempts, Katz et al. (1992), showed that

the dynamics of the system is strongly altered with respect to simulations without star

formation. The scheme to transform gas into stars has not been changed since that date.

It has been widely tested and implemented in different kind of hydrodynamical codes

(see Stinson et al., 2006; Saitoh et al., 2008, and references therein). A more detailed

discussion about the star formation algorithm in the context of its implementation in

DEVA and its motivation can be found in Section 2.4.

Of course, once star formation is also included, one would like to model all the

feedback associated with star evolution: metal enrichment, supernova explosions, stellar

winds, ultraviolet (UV) radiation from stars, black holes, UV cosmic background (QSO

and AGN). Also, magnetic fields (Roettiger et al., 1999; Dolag et al., 1999), radiative

transfer (Iliev et al., 2006) and a very long etcetera are other interesting issues. A huge

range of these effects have been implemented in different codes with very interesting

results. Anyway, a full description of these processes is far outside of this thesis and we

point the interested reader to the recent reviews Thacker & Couchman (2000); Yepes

(2001); Dolag et al. (2008) and references therein.

2.3 State of the Art

Numerical simulations in astrophysics have turn to be a key tool for theoreticians and

observers in the last twenty years. Definitely, the most important step in numerical

simulation of the last years has been the appearance of parallel codes that allow running

simulations with an important increase in the number of particles (or mesh resolution)

(e.g. Springel et al., 2005; Gottlöeber et al., 2006). Taking into account that the future

of supercomputers points towards an increase in the number of accessible CPUs rather

than on the speedup of individual CPUs, it is clear that this technique is going to be

basic in the future of numerical simulations. It is important to remark that this future

not only involves the run of numerical simulations by themselves but also, and maybe

even more important, their analysis pipelines.
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In regard to hydrodynamical simulations, it is clear that one focus in future will

be on incorporating further effects so that more complex problems can be studied in

detail. However, historically the implementation of more and more sub-scale effects in

cosmological simulations has responded to the rise of new problems concerning previous

inclusions of sub-scale physic, e.g. star formation for the overcooling problem, stellar

feedback to regulate the star formation (angular momentum catastrophe, low mass

halos problem, high star formation at low redshifts), etc (Moore et al., 1999a; Ceverino

& Klypin, 2007). As long as these issues are not fully understood by themselves and we

have a detailed theory for them, their phenomenological treatment would be, at least,

controversial and subject to continuous changes and improvements. In the next years

hydrodynamical simulations of the interstellar medium promise to be a key element

in shedding some light on these issues (Slyz et al., 2005; de Avillez & Breitschwerdt,

2007). Besides, it is interesting to remark that pure N-Body simulations have found

in the semi-analytical method (SAM) a very powerful ally to introduce baryon and

sub-scale physics in their results. It turns out that this method is very helpful, and

complementary to the hydrodynamical simulations, in the study of the effects of these

processes (see Baugh, 2006, and references therein).

The new era of precision cosmology requires new standards for the reliability and

accuracy of numerical simulations. Code comparison plays a crucial paper in this task.

A global comparison between N-body codes, hydrodynamical algorithms and different

additional physic implementations is mandatory. First serious attempts to do this have

started not a few years ago (Frenk et al., 1999). Last results show that although it seems

that we are going into the right direction, still much work is needed in order to attain

the required accuracy for upcoming surveys both in pure N-body and hydrodynamical

methods (Heitmann et al., 2005, 2007; Agertz et al., 2007). As a starting point, the

present agreement over a broad range of tests is gratifying, nevertheless, the lack of a

rigorous quantification of error is a serious barrier to future progress. As error control

requirements become more severe, the need for such a theory becomes further manifest.

In addition, as more (uncontrolled) physics is added, and subgrid modeling incorporated

as an essential part of the simulations, it becomes ever harder to extract error-controlled

results. The resulting uncertainties introduced by the parameterization of sub-resolution

physics have not yet been deeply explored in the context of code comparison, and any

comparison seems that would test the agreement between the recipes rather than identify

any computational error.

In the future, the demand on precision in both simulation techniques and captured

complexity of the physical processes within the simulations guarantee the computational

astrophysics as a challenge field.
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2.4 The Deva Code

In this Section we briefly describe DEVA, a Langrangian multistep AP3M-like-SPH code

designed to study galaxy formation and evolution in connection with the global cos-

mological model, that uses a formulation of SPH equations ensuring energy, entropy,

momentum and angular momentum conservation (Serna et al., 2003; Sáiz et al., 2004).

All simulations analyzed in this thesis have been performed using the DEVA code. In

designing DEVA, particular attention has been paid that conservation laws of physics

(energy, entropy and momentum) are correctly implemented in the code, so that they

hold at all scales and under physical conditions relevant for galaxy assembly in a cos-

mological context. A parallel version of DEVA, P-DEVA has also been used in this thesis

(Serna et al. in preparation). This version shares the same fundamental algorithms with

DEVA and has been implemented in OpenMP, i.e., it is designed for shared memory

multiprocessing.

2.4.1 Gravity and Gas Dynamics

To solve the Poisson equation (Eq. 2.3) DEVA uses an AP3M algorithm. This method

combines two basic ideas over the PM algorithm (see previous Section for more details).

It adds a Particle-Particle correction for close neighbors to the force computed using

the PM. Also it uses spatially adaptive mesh refinements in regions with high particle

density where the clustering makes the number of neighbors to increase and the short-

range force computation starts to dominate, making the pure P3M algorithm to scale

as O(N(N − 1)) (Couchman, 1991).

Concerning the hydrodynamical motion, in DEVA conventional SPH formulation is

improved in order to overcome an important problem found related with the entropy

violation of the dynamical equation (Hernquist, 1993). The origin of these errors can be

found in overlook relevant terms in the dynamical equations associated with the space

dependence of the smoothing length, h. The idea in DEVA is to calculate these additional

terms, previously neglected.

Another important particularity of DEVA is the attention paid to angular momentum

conservation, a key point to enable disc formation in simulations (Domı́nguez-Tenreiro

et al., 1998). The code uses a formulation of SPH equation that is consistent with the

smoothed estimate for the different properties (density, etc) of the local gas (Eq. 2.12).

However this equation is symmetrized to ensure that the reciprocity principle holds

(that is, if at a given time the jth particle belongs to the neighbor list of the ith particle,

then it is mandatory that, at this same time, the ith particle belongs to the neighbor

list of the jth particle), so that momentum and angular momentum are conserved. The

way to solve this issue is to use a symmetric kernel W (rij, hi, hj) = W̄ij that is usually



2.4 The Deva Code 19

built as the kernel average:

W̄ij =
1

2
[W (rij, hi) +W (rij, hj)] (2.14)

The implementation of this principle in an SPH code increases considerably the CPU

time per integration step, because a double loop on gas particles is necessary to evaluate

smoothing lengths.

Finally to get an accurate enough time integration scheme, and, at the same time,

to avoid that particles in denser volumes slow down the simulation, a PEC (predict-

evaluate-correct) scheme with individual timesteps has been developed and implemented

in the code. We refer the reader to Serna et al. (2003) for a detailed description of the

implementation of all these algorithms in DEVA.

2.4.2 Additional Physics

Cooling is also implemented in DEVA, taking the cooling curve from Tucker (1975) and

Bond et al. (1984) for an optically thin primordial mixture of H and He (X=0.76,

Y=0.24) in collisional equilibrium and in absence of any significant background radiation

field. Also, as we have pointed out, ideally a gravo-hydrodynamical code should describe

star formation (SF) at small scales as a result of evolution, and the possible ensuing

feedback effects. However, this would require an enormous dynamical range and very

high mass, time and space resolution, and these conditions cannot be met by the present

status of computer technology, and so, stellar processes have to be modeled, either

inspired in kpc or pc scale hydrodynamical simulations or other considerations (Katz

et al., 1992; Vázquez-Semadeni et al., 2000; Padoan et al., 2001; Avila-Reese & Vázquez-

Semadeni, 2001). One of these approaches and the one used in this thesis, is The

turbulent sequential star formation scenario (Elmegreen, 2002).

The interstellar medium (ISM) is assumed to be structured into different regions

characterized by specific values of their physical variables. These structures are thought

to form a multiscale hierarchy with different levels. The turbulent sequential star for-

mation scenario propounds that different physical processes operate at different levels

of this hierarchy to produce the interstellar medium gas structure. In particular, giant

molecular clouds and molecular clouds are supported against gravity by turbulence and

magnetic fields. Turbulence has a second role at this level: it produces gas compressions

at lower scales. Compressed volumes can then fragment into clumps and dense cores,

even if the cloud is globally stable because the average rms speed is large enough to give

global stability. The final step of the sequence is SF from dense core collapse, locally

triggered at this scale by SNe explosions and expanding shells, among other possibilities.

Not any dense core collapses into stars. A given core collapses when gravity over-

comes its kinetic energy support. A density threshold for core collapse appears at this
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scale, ρc, as well as a SF efficiency, εc. The ISM gas structure can be described by

means of the probability distribution function (pdf). Wada & Norman (2001) in their

simulations of whole galaxy models found a log-normal pdf. Stellar processes (stellar

winds, SNe explosions and so on) inject energy, momentum and metals into the ISM.

This very likely results into molecular cloud destruction. However, as the bulk ISM

could be stable and cloud-forming instabilities still operate in the cool phase, caused by

turbulent compressions, this stellar self-regulation of SF could not be very effective. De-

spite its complexity, SF (at least in disk galaxies) follows two simple empirical laws that

any deeper understanding of SF processes must explain: 1) the Kennicutt-Schmidt law

for the SF rate (Kennicutt, 1998). It represents an average over ∼disk scales, and, as an

average, takes into consideration the whole complex physical processes involved into SF

at disk scales. 2) Moreover, a density threshold at this scale appears empirically (Mar-

tin & Kennicutt, 2001). Concerning the explanation of these empirical laws, Elmegreen

(2003) propounds that the Kennicutt-Schmidt law can be linked to the SF processes at

the scale of dense cores through the pdf: the SF efficiency at a given scale is proportional

to the fraction of gas at this scale verifying ρgas > ρc. Li, Mac Low, & Klessen (2005a,b),

on their turn, have reproduced the observed global and local Kennicutt-Schmidt laws,

and, also, have obtained star formation thresholds in disk galaxies in their three di-

mensional SPH simulations of SF in disk galaxies where no stellar explicit feedback has

been implemented. These works indicate that an agreement of astronomers about the

precise role of stellar feedback in the setting up of the two laws above, among other SF

characteristics, is far from being reached.

This scenario is implemented in DEVA through a parameterization similar to those

used by Katz et al. (1992) and Tissera et al. (1997). To allow a gas particle to be

converted into stars it has to fulfill two conditions. First one is that ρgas must be lower

than a critical density ρcrit (as mentioned above this ρcrit is obtained empirically).

Also it has to be in a convergent flow, ∇~v < 0. Once a particle of gas satisfies these

requirements, it is transformed into stars according with an inefficient Schmidt-law-like

transformation rule,

dρg
dt

= −dρ∗
dt

= −c∗ρ
tg

(2.15)

where c∗ is a dimesionless star-formation efficiency parameter, and tg is a characteristic

time-scale chosen to be equal to the maximum of the local gas-dynamical time tdyn =

(4πGρg)
−1/2, and the local cooling time, tcool = u/u̇ (u ≡ thermalenergy). Using Eq.

(2.15) expression for the star formation rate, the probability p that a gas particle forms

stars in a time ∆t is

p = 1− e−c∗∆/tg (2.16)

p is computed at each time step for all eligible gas particles and draw random numbers
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to decide which particles actually form stars.

2.5 Summary

Numerical simulations of three-dimensional self-gravitating fluid have become an indis-

pensable tool in cosmology. They are now routinely used to study from the non-linear

gravitational clustering of dark matter up to the evolution of the intergalactic gas. Sim-

ulations have provided us with an invaluable insight into the physical processes respon-

sible for the formation and evolution of galaxies and other structures in the Universe.

But, despite the advances made in the last decades, much remains to be done to fully

understand the formation of all these structures. It is clear that much of the near future

of this technique points more into the direction of a proper description and modelization

of the baryonic physic and into code comparison projects than to any bottleneck due to

the parallel computation technology.

Finally we have introduced DEVA, a Lagrangian code that uses an AP3M algorithm

to resolve gravity and a SPH implementation to compute hydrodynamics in which par-

ticular attention has been paid in that the conservation laws of physics (energy, entropy,

momentum) were correctly implemented in the code. DEVA has been used to run all the

simulations analyzed in this thesis.





Chapter 3

Formation and Evolution of

Elliptical Galaxies

3.1 Introduction

It is not easy to answer the question, what is a galaxy? One possible definition could

be: A galaxy is a self-gravitating system composed of an interstellar medium, stars, and

dark matter. Another definition, may be: A galaxy is the environment in which stars

are born and die. Our galaxy, the Milky Way, is one of billions of such systems. Why

matter in the universe should be organized around such clear characteristic units is one

of the most outstanding cosmological questions.

The origin of cosmic structures, including galaxies of all types, is currently described

through the gravitational collapse of infinitesimal density fluctuations (the dynamical

evolution of these perturbations and the equations that govern them are discussed in

Chapter 2). After a decade of spectacular breakthroughs in physical cosmology, the

focus is beginning to shift away from determining the values of the basic cosmological

parameters towards attacking the problem of galaxy formation. A combination of fac-

tors is responsible for this change. Firstly, the concordance ΛCDM model have been

consolidating in the past years by a new generation of observational data sets concerning

the cosmic microwave background radiation, galaxy clustering and high redshift super-

novas (Spergel et al., 2007) giving a solid pillar to develop a complete theory of galaxy

formation and evolution1. Secondly, the 1990s saw the first detections of sizeable popu-

lations of galaxies at high redshifts (Abraham et al., 1996; Ferguson et al., 2000; Blain

et al., 2002; Beckwith et al., 2006; Scoville et al., 2007), allowing evolutionary trends

to be established. Finally, the increase in readily available computing power coupled

with the development of powerful new techniques, such as the one used in this thesis,

self-consistent hydrodynamical simulations (a full description of this method is given

1Further explanation of the standard cosmological model, its physical implication and its observa-
tional successes can be found in Appendix C
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in chapter 2), means that we are a in position to generate accurate predictions for the

properties of galaxies in hierarchical cosmologies.

This chapter introduces the Elliptical Galaxies in which this thesis is centered. We

also try to convince why the study of these objects is so exciting and compelling for

those who want to deepen into the galaxy formation and evolution process. In Sec-

tion 3.2, we start by providing the reader with a general overview of the last nearby

observations on this type of galaxies concerning their structural and kinematical profiles

and making a special emphasis in the Fundamental Plane relation. We also try to give

the theoretical framework to deal with all these data. The next Section 3.3 makes an

historical introduction of the two main scenarios of galaxy formation. We define several

important concepts on this subject and discuss the last observational and theoretical

constraints on this topic, focusing on the ones given by the observed evolution of the

elliptical population. A summary can be found in the last Section 3.4.

3.2 Elliptical Galaxies

Since the seminal work by Hubble (1936), we distinguish between three main classes

of galaxies based on their optical aspect: elliptical galaxies, disk galaxies and irregu-

lar. Elliptical galaxies have nearly-featureless oval forms with approximately elliptical

isophotes. Disk galaxies generally resemble the Milky Way; much of their luminosity is

contained in thin, rotating disks of stars. Irregular/peculiar galaxies follow neither the

disk nor elliptical plans; they lack any apparent symmetry. From these years we have

discovered much more information about all these types of galaxies and found that a

lot of other general properties are correlated with this morphological classification.

Among the different galaxy families, ellipticals are the easiest to study and those

that show the most precise regularities in their empirical properties, some times in the

form of tight correlations among their observable parameters. The interest of these

regularities lies in that they could encode a lot of relevant information on the physical

processes underlying the ellipticals formation and evolution. Elliptical galaxies exhibit

far less evidence for young stars, gas, or dust than do spiral galaxies, and have larger

random motion of stars than in spiral galaxies where the motion is a more ordered

rotation. In fact, they are dominated by old stellar populations, giving them red colors

and being also classified in the group of early-type galaxies (ETGs).

Despite of their interest, very few is known, both from the theoretical or observa-

tional points of view, about the mass or velocity distributions of the different elliptical

mass components (stars, dark matter, and hot and cold gas).
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3.2.1 Structure and Kinematical Profiles

3.2.1.1 Mass Distribution

There has been, nevertheless, an important recent progress on the photometric char-

acterization of elliptical galaxies, and, in fact, authors now agree that the Sérsic law

adequately describes the optical surface brightness profiles of most of them (Caon et al.,

1993; Trujillo et al., 2001; Bertin et al., 2002; Ravindranath et al., 2006). The Sérsic

law (Sérsic, 1968) can be written

I light(R) = I light
0 exp[−bn(R/Rlight

e )1/n], (3.1)

where I light(R) is the surface brightness at projected distance R from the ellipticals

center, Rlight
e is the effective half-light radius, encompassing half the total galaxy lumi-

nosity, bn ' 2n− 1/3 + 0.009876/n, and n is the Sérsic shape parameter. Putting n = 4

the largely used de Vaucouleurs R1/4 law (de Vaucouleurs, 1948) is recovered.

It is generally assumed that galaxies of any type are embedded in massive haloes

of dark matter. However, from the observational point of view, the importance and

the distribution of dark matter in elliptical galaxies is still a matter of a living debate.

Data on stellar kinematics from integrated-light spectra are very scarce beyond 2Rlight
e ,

making it difficult even to establish the presence of a dark matter halo (Kronawitter

et al., 2000; Magorrian & Ballantyne, 2001) through this method. Otherwise, the lack

of mass tracers at larger distances that can be interpreted without any ambiguity, has

historically hampered the proper mapping of the mass distribution at the outer regions

of elliptical galaxies. The situation is changing and a dramatic improvement is ex-

pected in the near future. In fact, several ongoing projects have already produced high

quality data on samples of ellipticals through different methods, for example: stellar

kinematics from integral-field spectroscopic measurements SAURON (de Zeeuw et al.,

2002; Cappellari et al., 2006); strong gravitational lensing CLASS (Myers et al., 1995);

LSD (Koopmans & Treu, 2003; Treu & Koopmans, 2004); SLACS (Koopmans et al.,

2006); stellar kinematics from planetary nebulae, PNs (Douglas et al., 2002), or glob-

ular cluster (Bergond et al., 2006) observations; and X-rays (O’Sullivan & Ponman,

2004b,a). In particular, the combination of high-quality stellar spectroscopy and strong

lensing analyses breaks the so-called mass-anisotropy degeneracy, giving strong indica-

tions that constant mass-to-light ratios can be ruled out at > 99% confidence level,

consistent with the presence of massive and extended dark matter haloes around, at

least, the massive lens ellipticals analyzed so far (Treu & Koopmans, 2004; Koopmans

et al., 2006). Moreover, these authors have also found that the dark matter and the

baryons mass density profiles combine in such a way that the total mass density profiles

can be fit by power-law expressions within their Einstein radii, whose slopes are consis-

tent with isothermality. Similar conclusions on the important amounts of dark matter
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inside the virial radii of ellipticals have been reached from weak lensing of L∗ galaxies

(Guzik & Seljak, 2002; Hoekstra et al., 2004), dynamical satellite studies (van den Bosch

et al., 2004) and X-ray analyses (Humphrey et al., 2006). Other observational results or

some of their interpretations, however, could suggest that the amounts of dark matter

in the haloes of some ellipticals are not that important. For example, Napolitano et al.

(2005) have analyzed the mass-to-light gradients of a sample of elliptical + SO galaxies,

and found that these are positive and important in massive, boxy elliptical galaxies,

but no very important for faint, disky elliptical galaxies. This has been confirmed by

Ferreras et al. (2005) using lensing analyses. This result is similar to what Romanowsky

et al. (2003) (see also, Romanowsky, 2006) have propounded from the study of random

velocities at the outskirts of elliptical galaxies through PN, found to be low, and first

interpreted by these authors as proving a dearth of dark matter in elliptical galaxies,

while Dekel et al. (2005) explain these large-radii low velocity dispersions as an effect

of anisotropy and triaxiality of the halo stellar populations of these galaxies.

Assuming that ellipticals are embedded in massive haloes of dark matter, a second

important concern is the possibility that their profiles have near-universal shapes. Here

most inputs come from numerical simulations because observational inputs are scarce.

When no dissipative processes are taken into account, spherically averaged dark matter

density profiles of relaxed haloes produced in N-body simulations have been found to be

well fitted by analytical expressions such that, once rescaled, give essentially a unique

mass density profile, determined by two parameters. These two parameters are usually

taken to be the total mass, Mvir, and the concentration, c, or the energy content,

E. These two parameters are, on their turn, correlated (i.e., the mass-concentration

relation, see, for example, Bullock et al., 2001; Wechsler et al., 2002; Manrique et al.,

2003). When hydrodynamical forces and cooling processes enter the assembly of these

haloes and the baryonic objects they host, the dark matter profiles could be modified

in the regions where baryons are dynamically dominant, due to the so-called adiabatic

contraction (see, for example, Blumenthal et al., 1986; Dalcanton et al., 1997; Tissera &

Dominguez-Tenreiro, 1998; Gnedin et al., 2004; Gustafsson et al., 2006). So, the shapes

of dark matter haloes in ellipticals could deviate from the near-universal behavior of

dark matter haloes produced in purely N-body simulations.

Another important issue concerns the three dimensional cold baryon mass (i.e.,

stellar mass and cold gas) distribution, and, more particularly, its distribution relative to

the dark matter haloes: are ellipticals homologous systems or is the homology broken in

their stellar mass distribution or in their relative dark- versus bright-mass distribution?

In regard to the other baryon component, the hot gas, galaxy formation scenarios

generally predict that galaxies are embedded in haloes of hot diffuse gas, extending well

beyond the distribution of stars. These haloes are thought to consist of gravitationally

trapped gas with a temperature of millions of Kelvin. X-ray emission from elliptical
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galaxies (Matsushita, 2001; Humphrey et al., 2006), and more recently also from spirals

(Pedersen et al., 2006), confirms these predictions and proofs the presence of such hot

halos around galaxies. The new generation of X-ray instruments (Chandra, XMM)

confirms and extends previous findings in ellipticals. Recent Chandra measurements

(Humphrey et al., 2006) have determined their total baryon fractions inside their virial

radii. These fractions indicate that these systems, despite having stellar masses >5 ×
1012M�, are not baryonically closed at virial radius, i.e., their baryon fraction is lower

than the average cosmological one. Put in other words, as occurs for clusters (Allen

et al., 2004; Zhang et al., 2006), ellipticals miss baryons inside their virial radii. So, we

would need to answer a set of questions related with these issues: where the missing

baryons are? How did hot gas haloes form? Where and when is the gas heated?

3.2.1.2 Kinematics

Studies on the global kinematics have established that elliptical galaxies as a class

are supported by anisotropic velocity dispersions (Binney, 1976, 1978, e.g.). However,

concerning the three dimensional velocity distributions of the different elliptical com-

ponents, very few is known either. In particular, the anisotropy of the stellar three-

dimensional velocity dispersion tensor is hard to be observationally characterized. This

is an important issue, however, not only because anisotropy plays an important role

in the analyses of the elliptical dark matter content at several effective radii, but also

because it could keep fossil information about the physical processes involved in mass

assembly and stellar formation in elliptical galaxies. The relative behavior of the three-

dimensional velocity dispersion tensors for the stellar and the dark mass components

(i.e., the so-called kinematical segregation) is still more uncertain. There is not an

unambiguous observational input about its presence in ellipticals, or about its possible

systematic dependence with the elliptical mass scale. However, it is possible to measure

the shape of absorption lines, hence the Line-Of-Sight Velocity Distribution (LOSVD),

which will tell us about the velocity anisotropy and hence constrain the orbital families

(Bender & Nieto, 1990; Rix & White, 1992; van der Marel & Franx, 1993). Only for a

limited number of ellipticals are the Vlos(R) or σlos(R) profiles available.

The LOSVD is often parameterized by the mean velocity in the line of sight Vlos

and velocity dispersion σlos, plus higher order moments (h3, h4, ...) of a Gauss-Hermite

series. The h3 and h4 offer extra information on the asymmetric and symmetric de-

viation, respectively, away from a perfect Gaussian. Detailed kinematic studies often

reveal kinematic distinct cores (Emsellem et al., 2004, e.g.) and non-relaxed structures

(e.g. Balcells & González, 1998) which may be related to the way the galaxy is formed

and to its merger history.

Observationally, a useful characterization of the velocity dispersion of an E galaxy is

provided by its central stellar line-of-sight velocity dispersion, σ0. Due to its interest, σ0
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has deserved an important attention in literature and it had been measured for several

E galaxy samples (Faber et al., 1987; Djorgovski & Davis, 1987; Dressler et al., 1987;

Lucey et al., 1991; Jorgensen et al., 1993, 1996; Kelson et al., 1997, 2000; Bernardi et al.,

2002, 2003a). Recently integral field (or 2D) spectroscopy has opened the possibility

for analyses of large scale kinematics and stellar population of galaxies (Bacon et al.,

2001).

In what follows we will deepen into the different observed correlations between pho-

tometric and kinematical parameters obtained for elliptical galaxies.

3.2.2 Parameter Correlations: The Fundamental Plane

Elliptical galaxies exhibit a bewildering variety of correlations between their kinemat-

ical and photometrical data. The strongest relation (i.e., with less scatter) found up

the moment is the one that relates the projected effective radius, Rlight
e (as measured

from the brightness profile), the mean surface brightness within the effective radius,

< I light >e, and the central velocity dispersion, σ0 (Djorgovski & Davis, 1987; Dressler

et al., 1987; Faber et al., 1987). In fact, this correlation is so tight that it is usually

said that elliptical galaxies lie on a Fundamental Plane (FP). The FP relation can be

written as

log10R
light
e = a log10 σ0 + b log10 < I light >e +c. (3.2)

Some previous known relation for ellipticals can be seen as a projection onto any two

axes out of the three variables. Examples of this projections are the effective radius

and surface brightness relation (Kormendy, 1977), the Faber-Jackson relation (Faber

& Jackson, 1976) between luminosity and velocity dispersion. The Dn − σ relation

is another example, as it was constructed as a nearly edge-on projection of the FP

(Dressler et al., 1987).

In the last years, the Sloan Digital Sky Survey (SDSS, York et al., 2000) has sub-

stantially improved the statistics on elliptical samples. The sample selected by Bernardi

et al. (2003a) from the SDSS database in the summer of 2001, using morphological and

spectral criteria, contains 9000 ellipticals in the redshift range 0.01 ≤ z ≤ 0.3 and in

every environment from voids to groups to rich clusters. This is a larger number of el-

lipticals than in all the previously considered samples. Analyzes of their structural and

dynamical parameters have shown that the distributions of their luminosities L, radii

at half projected light, Rlight
e , and central line-of-sight velocity dispersions, σ0 (Bernardi

et al., 2003b,c), are approximately gaussian at any z. Moreover, a maximum likelihood

analysis indicates that the pairs of parameters σ0—L and Rlight
e —L, or their combina-

tions, such as the mass-to-luminosity ratio within the effective radii Me/L and L (where

Me is the dynamical mass defined as Me = 2Rlight
e σ2

0/G), show correlations consistent

with those previously established in literature, obtained from individual galaxy spectra

of smaller samples, such as the Faber-Jackson relation (Faber & Jackson, 1976); the
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Dn—σ0 relation (Dressler et al., 1987); and the surface brightness —Rlight
e relation (Ko-

rmendy, 1977; Kormendy & Djorgovski, 1989), among others. Furthermore, early-type

galaxies in the SDSS have been found to have roughly constant stellar-mass-to-light

ratios (Kauffmann et al., 2003b,a; Padmanabhan et al., 2004). The values of the FP

coefficients for the SDSS elliptical sample are a ' 1.5, similar in the four SDSS bands,

b ' −0.77, and c ' −8.7 (see their exact values in Bernardi et al., 2003c, Table 2) with

a small scatter. These SDSS results confirm previous ones, either in the optical (Lucey

et al., 1991; de Carvalho & Djorgovski, 1992; Bender et al., 1992; Jorgensen et al.,

1993; Prugniel & Simien, 1996; Jorgensen et al., 1996) or in the near-IR wavelengths

(Recillas-Cruz et al., 1990, 1991; Pahre et al., 1995; Mobasher et al., 1999), even if the

published values of a show larger values in the K-band than at shorter wavelengths

(see, for example, Pahre et al., 1998). La Barbera et al. (2008) have also confirmed

these results using a sample of ∼1500 ETGs studied both in the optical (Data Release

5 of the SDSS) and the near infrared (UKIRT Infrared Deep Sky Survey, UIDSS). The

invariance of the FP with wave band is in agreement with Cappellari et al. (2006), who

found for 25 ETGs from the SAURON project the M/L versus L relation to have the

same slope in both the I and K bands.

Recently Hyde & Bernardi (2008a,b) have studied the Fundamental Plane using a

sample of 50000 early-type galaxies based on the Data Release Fourth of the SDSS.

They selected galaxies with velocity dispersions 60 < σ0 < 400 km× s−1 These authors

have confirmed previous results on the slope of the Fundamental Plane and pointed

out a possible dependence of the fit parameters on the range of L or σ0 in the sample

which may explain some of the relatively wide range of Fundamental Plane coefficients

in the literature. They also showed that the intrinsic scatter around this plane becomes

broader at low sizes/masses.

The existence of the FP and its small scatter has the important implication that

it provides us with a strong constraint when studying elliptical galaxy formation and

evolution (Bender et al., 1992; Guzman et al., 1993; Renzini & Ciotti, 1993). The

physical origin of the FP is not yet clear, but it must be a consequence of the physical

processes responsible for galaxy assembly. These processes built up early type galaxies

as dynamically hot systems whose configuration in phase space are close to equilibrium.

For this reason, the general framework to explain this relation is the virial theorem,

which relates the moment of inertia of a self-gravitating system with its kinetic energy

and potential energy. The scalar form of the virial theorem, for which one assumes that

the system is in steady state, so its moment of inertia is constant in time, can be written

as (see Binney & Tremaine, 1987, for the full demonstration):

2T + V = 0 (3.3)

where T is the kinetic energy of the system and V its potential energy.
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The kinetic energy of an isolated system with mass, Mvir, is just T = 1
2Mvir <

(vtot
3 )2 >, where < (vtot

3 )2 > is the mean-square speed of the whole system, including

both dark and baryonic matter, and Mvir is its virial mass. We also use the definition

of a characteristic gravitational radius, related with the system’s mass and potential

energy as rtot
g = GMvir

2

|V | (Binney & Tremaine, 1987, chapter 2.5). Using these relations

in the scalar virial equation, we obtain:

Mvir = cf

< (vtot
3 )2 > rtot

g

G
(3.4)

where cf is a form factor of order unity.

All the quantities that appear in Equation (3.4) can be related with available ob-

servables. The virial mass with the luminosity L

Mvir =
Mvir

M∗
· M∗
L
· L (3.5)

where we have also introduced the stellar mass of the galaxy, M∗. Therefore we can

distinguish between the well known stellar-mass-to-light ratio M∗/L and the total-to-

stellar mass ratio Mvir/M∗.

For the mean-square speed of the system, using the arithmetic mean, v̄tot
3 , and the

standard deviation σtot
3 we have that < (vtot

3 )2 >=< v̄tot
3 >2 +(σtot

3 )2. As pointed out

before, observations indicate that ellipticals are systems that are supported by velocity

dispersion, so we can neglect the ordered motion term, v̄tot
3 ∼ 0. In this case, we

can just utilize the standard deviation to sample the kinetic energy, and, introducing

its observational equivalent, the central line-of-sight velocity dispersion of the stellar

component, σ0, obtain the following expression

< (vtot
3 ) >2∼= (σtot

3 )2 = 3 · cv · σ2
0 (3.6)

where the cv is a constant that relates the standard deviation of the whole system with

the observational line-of-sight velocity dispersion.

Additionally we define cr, to relate the gravitational radius with the observed effec-

tive radius, this is the projected effective radius obtained from the light curve of the

galaxy:

rtot
g = cr ·Rlight

e (3.7)

Before going any further, to simplify, we can define a unique constant, cM
vir, that

group together the different ones defined in Equations (3.4), (3.6) and (3.7)

cM
vir = cf · cv · cr (3.8)

It is important to remark for future discussions in this thesis that to do this transfor-
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mations, we have made three clearly different steps. Firstly considering the visible light

instead of the whole virialized system, implies that we need to go from the halo-virial

mass scale to the observed light galaxy scale. Therefore we have to take into account

two issues, the change of scales from the halo to the galaxy and the relation between the

stellar mass of this galaxy and the light that it produces, which is what we really see.

The third one is the fact that we have to use projected quantities, so a projection effect

is also included. All the constants and ratios introduced in the last equations account

for our ignorance of these effects.

If we replace in Equation (3.5) the last luminosity term, L, with the relation L =

2π < I light >e R
light
e

2
and use it with Equations (3.6) and (3.7) in Equation (3.4) we

obtain

Rlight
e =

3

2πG
· cM

vir · (
Mvir

M∗
)−1 · (M∗

L
)−1 · σ2

0· < I light >−1
e (3.9)

that is, from the virial theorem we have predicted a relation between the same observ-

ables that are involved in the Fundamental Plane (see Equation 3.2). Besides, if one

assumes that Mvir/M∗ ·M∗/L is independent of the elliptical luminosity or mass scale

and that the galaxies form a homologous family (i.e. cMvir is also constant) the appli-

cation of the virial theorem predicts the FP relation to be Rlight
e ∝ σ2

0 < I light >−1
e .

But the observational results, described above, obtain a FP relation tilted respect to

the virial relation: Rlight
e ∝ σ1.2

0 < I light >−0.8
e . This effect is known as the tilt of the

Fundamental Plane and it is supposed to be caused by the falsification of one (or both)

hypothesis made above.

Different authors interpret the tilt of the FP relative to the virial relation as caused

by different misassumptions that we comment briefly. Firstly we consider the M∗/L

and the Mvir/M∗ ratios:

1.1) A first possibility is that the tilt is due to systematic changes of stellar age and

metallicity with galaxy mass, or, even, to changes of the slope of the stellar initial

mass function with galaxy mass, resulting in systematic changes in the stellar-

mass-to-light ratios, M∗/L, with mass or luminosity (Zepf & Silk, 1996; Pahre

et al., 1998; Mobasher et al., 1999). But these effects could explain at most

only one third of the tilt value in the B-band (Tinsley, 1978; Dressler et al.,

1987; Prugniel & Simien, 1996; Renzini & Ciotti, 1993; Trujillo et al., 2004).

Furthermore, early-type galaxies in the SDSS have been found to have roughly

constant stellar-mass-to-light ratios (Kauffmann et al., 2003b,a). Anyhow, the

presence of a tilt in the K-band FP, where population effects are no important,

indicates that it is very difficult that the tilt is caused by stellar physics processes

alone, as Bender et al. (1992); Renzini & Ciotti (1993); Guzman et al. (1993);

Pahre et al. (1998); La Barbera et al. (2008), among other authors, have suggested.

1.2) A second possibility is that Mvir/L changes systematically with the mass scale
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because the total dark-to-visible mass ratio, Mvir/M∗ changes (see, for example,

Renzini & Ciotti, 1993; Pahre et al., 1998; Ciotti et al., 1996; Padmanabhan et al.,

2004; Cappellari et al., 2007; Hyde & Bernardi, 2008b; Tortora et al., 2009).

Otherwise, a dependence of cvir
M on the mass scale could be caused by systematic

differences in:

2.1) the dark versus bright matter spatial distribution,

2.2) the kinematical segregation, the rotational support and/or velocity dispersion

anisotropy in the stellar component (dynamical non-homology),

2.3) systematic projection or other geometrical effects.

Taking into account these effects in the FP tilt, it is mandatory to model the galaxy

mass and velocity three-dimensional distributions and comparing the outputs with high

quality data.

Bender et al. (1992) considered effects 2.1) and 2.2); Ciotti et al. (1996) explore 1.2)

- 2.2) and conclude that a systematic increase in the dark matter content with mass,

or differences in its distribution, as well as a dependence of the Sérsic shape parameter

for the luminosity profiles with mass, may by themselves formally produce the tilt;

Padmanabhan et al. (2004) find evidence of effect 1.2) in SDSS data. Other authors

have also shown that allowing for broken homology, either dynamical (Busarello et al.,

1997), in the luminosity profiles (Trujillo et al., 2004), or both (Prugniel & Simien, 1997;

Graham & Colless, 1997; Pahre et al., 1998), brings the observed FP closer to Eq. (3.9).

One important source of ambiguity in observational data analysis comes from the

impossibility to get accurate measurements of the elliptical three-dimensional mass dis-

tributions (either dark, stellar or gaseous) and velocity distributions. Analytical models

give very interesting insights into these distributions as well as the physical processes

causing them, but are somewhat limited by symmetry considerations and other nec-

essary simplifying hypotheses. Self-consistent gravo-hydrodynamical simulations are a

very convenient tool to work out this problem, as they directly provide with complete

6-dimensional phase-space information on each constituent particle sampling a given

galaxy-like object formed in the simulation, that is, they give directly the mass and

velocity distributions of dark matter, gas and stars of each objet. This phase space

information would allow us to test whether or not the cvir
M (that is, the cf , cv and cr)

coefficient, as well as the Mvir/M∗ ratios, do or do not systematically depend on the

mass scale. This is the issue addressed in Section 6.2, where we analyze whether the

dependence is such that the tilt and the scatter of the observed FP can be explained in

terms of the regularities in the structural and dynamical properties of ELOs formed in

self-consistent hydrodynamical simulations.
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3.2.2.1 Rotation versus Shape. Two kinds of Elliptical Galaxies?

Still under the scope of the virial theorem, we can also get a lot of information about

the internal motions of elliptical galaxies from the knowledge of their shapes and speeds

of rotation. The tensor virial theorem (see Binney & Tremaine, 1987) relates the kinetic

energy tensor Tij , the potential energy tensor,Vij , and the moment of inertia tensor Iij .

It is useful to split the kinetic energy tensor in the Kij and Πij tensors, that account for

the ordered and random motions respectively, in the following form: Tij = Kij + 1
2Πij .

The tensor virial theorem can be written

1

2

d2Iij
dt2

= 2Kij + Πij + Vij (3.10)

The classical example is an axisymmetric system that rotates about its symmetry

axis (that we call the z-axis) and the system is seen edge-on (from the x-axis, for

example). In this case, thanks to the symmetry of the problem, we have Vxx = Vyy and

Vij = 0 (if i 6= j) and similar relations for Π and K tensors. Assuming that the galaxy

is in equilibrium (d2Iij/dt
2 = 0) the tensor virial Equation (3.10) yields to only two

nontrivial equations: 2Kxx + Πxx + Vxx = 0 and 2Kzz + Πzz + Vzz = 0. Dividing the

first equation by the second, we obtain

2Kxx + Πxx

2Kzz + Πzz
=
Vxx
Vzz

(3.11)

Also if the only streaming motion is the rotation about z-axis we can write

2Kij =
1

2
Mv2

los

 1 0 0

0 1 0

0 0 0

 (3.12)

where M is the mass of the system and v2
los is the mass-weighted mean-square rotation

speed. Now for the tensor associated with the random motion, Π,

Πij = Mσ2
los

 1 0 0

0 1 0

0 0 1− δ

 (3.13)

where δ is the anisotropy parameter that accounts for the possibility that the random

dispersion in the z-axis is different from the dispersions in the x and y-axis. M is again

the mass of the system and σ2
los is the mass-weighted random velocity along the line of

sight.
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We can now use Equations (3.12) and (3.13) in (3.11) and rewrite it as

Vxx
Vzz

=
1
2V

2
los + σ2

los

(1− δ)σ2
los

(3.14)

In systems whose isodensity surfaces are similar concentric ellipsoids, any ratio of

terms like Vxx/Vzz depends only on the ellipticity, ε3d, of these surfaces. This shape

parameter, ε3d ≡ 1 − c
a , is determined by measuring the major and minor axes, a and

c, of the ellipsoid. So Vxx/Vzz = f(ε) and Equation (3.14)

Vlos
σlos

=
√

2 · f(ε3d) · (1− δ)− 2 (3.15)

A reasonably accurate approximation for f(ε3d) (see Binney & Tremaine, 1987, Ta-

bles 2.1 and 2.2) is

f(ε3d) ' 1 +
ε3d

2(1− ε3d)
(3.16)

additionally there are some interesting easy examples that can be illustrative. For a

non rotating galaxy vlos = 0 then 1 − δ = 1
f(ε3d) '

2−2ε3d
2−ε3d . In the case of an isotropic

rotating galaxy, δ = 0, then
Vlos
σlos
'
√

ε3d
1− ε3d

(3.17)

The observational application of these relationships is somewhat complicated by pro-

jection effects. Instead of vlos and σlos one has to use their observational counterparts.

These are Vmax, the maximum of the line-of-sight rotation curve and σ0, the central l.o.s.

velocity dispersion. The apparent ellipticity, ε, is determined by measuring the major

and minor axes, a and b, of a chosen isophote where ε ≡ 1 − b
a . However, for isotropic

rotators (δ = 0) projection diminishes apparent ellipticity and rotation velocity alike in

such a way that Eq. (3.17) is still roughly correct (Binney & Tremaine, 1987).

Davies et al. (1983) studied the now classical Vmax/σ0 vs. ε diagram2 for spheroids

(Illingworth, 1977; Binney, 1978). They found that luminous (and massive) elliptical

galaxies were characterized by low Vmax/σ0 and a fairly round aspect (low ε), while

ellipticals with intermediate luminosity tend to have larger values of Vmax/σ0 and ε.

Some observations of near-by elliptical galaxies corroborate this division in two flavors

according to their luminosity (Lauer, 1985; Bender, 1988; Bender et al., 1989; Nieto

& Bender, 1989; Bender et al., 1994; Gerhard et al., 2001; Pellegrini, 2005; Cappellari

et al., 2007; Emsellem et al., 2007). On the one hand, high luminosity elliptical galaxies

show boxy isophotal deviations from perfect ellipses, low rotation and high velocity

dispersion. They are powerful emitters in X-rays and radio. On the other hand, low to

2Another successful formulation for this diagram is (V/σ)∗ vs ε, where (V/σ)∗ = (Vmax/σ0)obs
(Vmax/σ0)theo

.

Here (Vmax/σ0)obs is the observed relation while (Vmax/σ0)theo is the theoretical value obtained from
Equation (3.17), this is, if the system is an oblate rotator supported by rotation. Note that (V/σ)∗ ' 1
for a rotationally flattened galaxy, and < 1 for a galaxy flattened by velocity anisotropy.
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intermediate luminosity elliptical galaxies show disky isophotal deviations with a fair

to important contribution of rotation as compared with velocity dispersion. Finally,

they are not associated to extended X-ray emission or radio loud objects. Because of all

these multiple correlations, Kormendy & Bender (1996) have proposed that boxyness

or diskyness be adopted as the primary classification criterion for elliptical galaxies.

Cappellari et al. (2007); Emsellem et al. (2007) proposed to use the rotational support

and to name them as slow and fast rotators. However, it is worth to mention that the

largest homogeneous set of Vmax/σ0 and ellipticity values is currently around 90 early-

type objects. In this sense, Rothberg & Joseph (2006) has also studied this relation in

a sample of 51 nearby ellipticals classified as merger remnants finding some interesting

results which indicate that this picture is not so clear and that it is far from being closed.

Concerning the study of this diagram at higher redshifts, recently van der Marel & van

Dokkum (2007) presented evidences of evolution of the rotation support of spheroidal

systems since z = 0.5 pointing towards a decrease in the rotational support as the

redshift decreases. Present formation schemes should explain this dichotomy and its

possible evolution.

3.2.2.2 The Photometric Plane

Finally, since the first statistical studies of galaxies, a big effort has been done in looking

for empirical correlations involving only the photometric parameters, given the obser-

vational difficulties in measuring σ0 and other kinematical descriptors. An interesting

example is the Kormendy relation between Rlight
e and µe (Kormendy, 1977) already dis-

cussed in previous sections under the Fundamental Plane framework. However, in the

last years, the fact that the projected luminosity profile of elliptical galaxies appears to

be universal and can be parameterized by the Sérsic law has generated a lot of interest

in the shape parameter n that characterize these profiles (see Section 3.2.1).

The shape parameter, n, is related to both the curvature of light profiles and to the

degree of concentration of light. It soon became clear that, in local elliptical samples,

n correlates with global quantities such as the total luminosity and effective radius

(Caon et al., 1993; Prugniel & Simien, 1997; Khosroshahi et al., 2000; D’Onofrio, 2001),

or σstar
los,0 (Graham, 2002; Vazdekis et al., 2004). Just as the Kormendy relation is a

projection of the FP, both the Rlight
e − µe and the Rlight

e − n relations may be seen

as projections of a more fundamental law among these three photometric parameters.

In logarithmic units, such a relation indeed exists and it is a plane referred to as the

Photometric Plane (PhP) recently detected in both near infrared (Khosroshahi et al.,

2000) and optical (Graham, 2002). The PHP has an intrinsic scatter that is only

slightly larger than that of the FP, therefore making this relation an interesting tool to

analyze the properties of galaxies at different redshifts. However, a definitive theoretical

interpretation is still lacking. Modeling the stars in ETG as a self-gravitating gas, Lima
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Neto et al. (1999) have recovered a PhP like relation (referred to as the entropic plane)

by assuming that the specific entropy (i.e., the entropy by mass unit) is constant for all

ETGs. Later, Márquez et al. (2001) derived an energy - entropy (or mass - entropy) line

giving a possible explanation for the structural relations among photometric parameters.

Moreover, they also found out that the specific entropy increases as a consequence of

merging processes so offering a possible way to test the model against the observed

variation of the PhP with redshift. In this sense, even if still very incomplete, new data

(Coe et al., 2006; Ravindranath et al., 2006) pointed to an extension of these correlations

towards higher zs, that is, to a homogeneity of the elliptical population with z, except

that the objects became on average more compact, at fixed stellar mass, with increasing

z (Trujillo et al., 2007; Buitrago et al., 2008; van der Wel et al., 2008).

Some authors have recently argued that these two relations could be the projection

of a more fundamental one between the four parameters involved in them, following the

idea of underlying more general relations that gave rise to the Fundamental Plane and

the Photometric Plane (see Graham, 2002; Capozziello et al., 2007). However, as with

the Photometric Plane the theoretical interpretation of this Sersic Virial hyperplane is

still not clear.

3.2.3 Observational Problems, Theoretical Improvements

We see that the mass or velocity distributions of the different elliptical mass compo-

nents encode a lot of information about the physical origin of the different parameter

correlations observed, and, consequently, on the physics of their formation. We see also

that, unfortunately, observational methods, by themselves, suffer from some drawbacks

to deepen into these issues. A major problem is that the information on the intrin-

sic mass distribution is not directly available: we see the projected distributions (not

three-dimensional mass) either dark, stellar or gaseous. Another major caveat is that

the intrinsic 3D velocity distribution of galaxies is severely limited by projection, only

the line-of-sight velocity distributions can be inferred from galaxy spectra. And, so, the

interpretation of observational data is not always straightforward. To complement the

information provided by data and circumvent these drawbacks, analytical modeling is

largely used in literature (Kronawitter et al., 2000; Gerhard et al., 2001; Romanowsky

& Kochanek, 2001; Borriello et al., 2003; Padmanabhan et al., 2004; Mamon &  Lokas,

2005a,b). They give very interesting insights into mass and velocity distributions, as

well as the physical processes causing them, but are somewhat limited by symmetry

considerations and other necessary simplifying hypotheses. These difficulties and limi-

tations could be circumvented should we have at our disposal complete information on

the phase-space of the galaxy constituents. This is not possible through observations,

but can be attained by numerical simulations.

The first authors who studied the formation and properties of elliptical galaxies by
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means of numerical methods used purely gravitatory pre-prepared simulations. Capelato

et al. (1995) first addressed the origin of the FP by analyzing the remnants of the dis-

sipationless mergers of two equal-mass one-component King models, and varying their

relative orbital energy and angular momentum, they showed that their merger rem-

nants lie in the FP. This result was extended by Dantas et al. (2003), who used one-

and two-component Hernquist models as progenitors, González-Garćıa & van Albada

(2003), based on Jaffe (1983) models; and by Boylan-Kolchin et al. (2005), who used

Hernquist+NFW models, confirming that further dissipationless mergers of objects on

the FP produce new objects in the FP. Nipoti et al. (2003) showed, in turn, that the

FP is well reproduced by dissipationless hierarchical equal-mass merging of one- and

two-component galaxy models, and by accretion with substantial angular momentum,

with the merging zero-order generation placed at the FP itself. They also found that

both the Faber-Jackson and the Kormendy relations are not reproduced by the simula-

tions, and conclude that dissipation must be a basic ingredient in elliptical formation.

That further dissipationless mergers preserve the Fundamental Plane but not its pro-

jections, was also pointed out by Boylan-Kolchin et al. (2005). In agreement with this

conclusion, Dantas et al. (2002, 2003) showed that the end products of dissipationless

collapse generally do not follow a FP-like correlation. Bekki (1998) first considered the

role of dissipation in elliptical formation through pre-prepared simulations. He adopted

the merger hypothesis (i.e.., ellipticals form by the mergers of two equal-mass gas-rich

spirals) and he focused on the role of the timescale for star formation in determining

the structural and kinematical properties of the merger remnants. He concluded that

the slope of the FP reflects the difference in the amount of dissipation the merger end

products have experienced according with their luminosity (or mass). Recently, Robert-

son et al. (2006) have confirmed this conclusion on the role of dissipative dynamics to

shape the FP, again through pre-prepared mergers of disk galaxies.

Apart from the origin of the FP, other aspects of the formation and evolution of

elliptical galaxies have been analyzed through pre-prepared simulations. For example,

a number of recent numerical simulations of galaxy encounters have dealt with the

population of the classical Vmax/σ0 vs ε diagram and the formation of boxy and disky

objects (Naab & Burkert, 2003; González-Garćıa & Balcells, 2005; González-Garćıa &

van Albada, 2005; Bournaud et al., 2005; Naab et al., 2006; Robertson et al., 2006; Cox

et al., 2006; González-Garćıa et al., 2006; Jesseit et al., 2007). These studies indicate

that mergers between disk galaxies tend to produce too large rotation when compared

with present day massive elliptical galaxies. Besides, mergers between elliptical galaxies

do reproduce the observed characteristics. Khochfar & Burkert (2003); Kang et al.

(2007) (and references there in) present first attempts of semi-analytical modeling to

address the origin of the observed dichotomy in early type galaxies.

We see that pre-prepared simulations of merger events provide a very useful tool
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to work out the mass and velocity distributions of elliptical galaxies. They allow also

to find out their links with the processes involved in galaxy assembly, but they are

somewhat limited, for example by the fact that the probability of a particular initial

setup at a given z is not known a priori, and that mergers involving more than two

objects also occur and are frequent at high zs, so that some complementary information

must be provided, for example through semi-analytical models (Khochfar & Burkert,

2005; Naab et al., 2006).

To overcome these limitations, a convenient method is to study the processes in-

volved in galaxy formation in a cosmological context through self-consistent gravo-

hydrodynamical simulations (a description of this technique and the state of the art

can be found in Chapter 2).

Kobayashi (2005) has simulated the chemodynamical evolution of 74 fields with

different cosmological cold dark matter initial spectra set in slowly rotating spheres, each

of them with a 1.5 Mpc comoving radius and vacuum boundaries. So, these simulations

are not yet fully self-consistent. She succeeded in reproducing the observed global

scaling relations shown by elliptical galaxies, and, in particular, the FP relation, and

the surface-brightness profiles, as well as the color-magnitude and the mass-metallicity

relations. She also analyzed the role of major merger events and the timescales for star

formation in shaping the mass and sizes of remnants.

Concerning self-consistent hydrodynamical simulations, Sommer-Larsen et al. (2002)

presented first results on early-type galaxy formation in a cosmological context. Meza

et al. (2003) presented results of the dissipative formation of a compact elliptical galaxy

in the ΛCDM scenario. Kawata & Gibson (2003, 2005) and Gibson et al. (2007) studied

the X-ray and optical properties of virtual ellipticals formed in different simulations run

with their chemodynamical Tree/SPH code. Romeo et al. (2005) analyzed the galaxy

stellar populations formed in their simulations of galaxy clusters. Naab et al. (2007)

got, from cosmological initial conditions, a spheroidal system whose photometric and

kinematical properties agree with observations of ellipticals, in a scenario not including

feedback from supernovae or AGN and not requiring recent major mergers. Interesting

results on elliptical formation have also been obtained by De Lucia et al. (2006), from

a semi-analytic model of galaxy formation grafted to the Millennium Simulation.

However, detailed analyses of the mass and velocity distributions of samples of vir-

tual ellipticals formed in fully self-consistent hydrodynamical simulations, and, in par-

ticular, of the amount and distribution of dark matter relative to the bright matter

distribution, as well as of the kinematics of the dark and bright components, and their

successful comparison with observational data, are still missing. Filling this gap is one

of the aims of this thesis.
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3.3 Monolithic Collapse vs Hierarchical Merging

The data discussed in the previous section provide us with a valuable tool that we can

use not only for asking us how are elliptical galaxies today but also to try to dig into

how they have been formed. As we have pointed out in the introduction of this chapter,

now that we have a solid framework, the concordance cosmological model, we should

try to go one step further and investigate the origin of the Hubble sequence. However,

understanding the formation of every type of galaxies and how they have evolved is still

controversial and an issue of living debate in the astrophysical community (Ellis & Silk,

2007).

In current ΛCDM galaxy formation and evolution scenarios at least two physical

phenomena could contribute to the mass assembly: spherical collapse and hierarchical

mergers (Peebles, 2002). Two main families of models may be recognized depending of

the importance of each of these phenomena: the monolithic scenario (Eggen et al., 1962;

Larson, 1974) and the hierarchical scenario (White & Rees, 1978; Cole et al., 1994).

Although the picture of spherical collapse is quite simple, it is very useful when

studying collapsed objects like galaxies. The physical description of the processes that

follow from primordial fluctuations can only be done analytically in cases of particular

symmetry. The simplest one is the collapse of an overdensity of dark matter, with a

spherical density profile given by the step function and a radius lower than the hori-

zon. In this case, we can use a Newtonian approach that shows that mass shells with

negative total energy expand up to a maximum radius and then recolapse, reaching the

equilibrium through violent relaxation. However, in the real world, radial symmetry is

not exact and the halo reaches a virial equilibrium state after a violent relaxation phase

(Peebles, 1980). Numerical simulations show the basic scalings derived from this ap-

proach to be roughly correct and useful for making simple analytic estimates (Bryan &

Norman, 1998; Silk & Bouwens, 2001). However, the general picture of spherical collapse

has been evolved during the last years to a more sophisticated one. Now, collapse as a

physical process involved in galaxy formation is a non symmetrical mechanism where

star formation occurs in small clumps of gas during a short phase of time. The modern

version of the classical monolithic collapse scenario puts the stress on elliptical assembly

out of gaseous material (that is, with dissipation), either in the form of a unique cloud or

of many gaseous clumps, but not out of pre-existing stars, with the stellar populations

forming at high z and on short timescales relative to spirals (Matteucci, 2003).

On the other hand, in the Cold Dark Matter scenario, halos form hierarchically

by the merging of smaller halos and accretion (see Chapter C for more details on this

subject) and the role of these mergers in the galaxy formation models cannot be ig-

nored. Then the hierarchical merging scenario propounds that galaxies form hierarchi-

cally through successive, random mergers of subunits (the so-called galaxy merger tree)

over a wide redshift range, in such a way that more massive ones form more likely at late
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time. The importance of mergers as an essential element in galaxy assembly, and their

evolution, is becoming more significant as soon as new observations are giving more

information of their frequency (below we will address the observational data available

on this subject).

3.3.1 Different Observational Constraints

In the monolithic collapse scenario, galaxies of different morphological types (spirals and

ellipticals) are born intrinsically different, whereas in the hierarchical merging scenario,

galaxies end up as spirals or ellipticals depending on the details of their merger history.

The hierarchical formation of giant galaxies is predicted in models to be the natural

outcome of major mergers (Barnes & Hernquist, 1992). Some indications are the visible

signs of past merging activity around giant elliptical galaxies, such as the so-called shells

or ripples found around 10% of all massive galaxies (e.g., Michard & Prugniel, 2004).

A significant number of central cluster galaxies also show evidence for recent merger

activity in the form of multiple nuclei and tidal features (e.g., Conselice et al., 2005).

Another piece of evidence for merger activity are decoupled cores found in the centers

of a great number of ellipticals (e.g., de Zeeuw et al., 2002). Results at high redshift

shows that a typical galaxy with a stellar mass of M∗ > 1010M� undergoes between

1-2 major mergers at z < 1.2 (Conselice et al., 2008). These authors also found that

for galaxies selected by M∗ > 1010M�, the merger fraction can be parameterized by

fm(z) = f0 × (1 + z)m with the power-law slope m = 2.3 ± 0.4. They also found that

the merger rate of these galaxies increases linearly between z = 0.7 and z = 3. Other

methods of finding mergers through galaxy pair counts, either kinematic or spatially

projected (Le Fèvre et al., 2000; Patton et al., 2002; Kartaltepe et al., 2007; Bluck et al.,

2009), agree with this result out to z ∼ 1 (see De Propris et al., 2007, for a comparison

between the two methods). The fact that mergers are not rare events in the universe

and they are even more frequent at high redshifts, aims to indicate that they play an

important role in galaxy assembly.

Attempts to discriminate between the two models focus mostly on elliptical galaxies,

which are easier to study than spiral ones. As we have seen above, present-epoch ellip-

ticals form a very homogeneous family, with very similar intrinsic properties, compared

with the heterogeneous family of spirals. Furthermore, they are mostly composed of old

stellar populations, about as old as the universe (Thomas et al., 2005; Jimenez et al.,

2007). This fact is responsible for the most distinctive property of ellipticals: their

color. Ellipticals are the reddest galaxies in the local universe. They have little or no

star formation activity.

Due to their different formation times for ellipticals, these scenarios also yield re-

markably different predictions for the evolution in the number density of early-type

galaxies as a function of redshift.
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Joint gravitational lensing and dynamical analyses of elliptical lens galaxies have

evidenced their lack of significant structural and dynamical evolution at least out to

z ∼ 1 (Treu & Koopmans, 2004), and, moreover, that the evolution of their average

stellar mass-to-light ratio, M star/LB, is consistent with the predictions of a scenario

of pure luminosity evolution of their stellar populations (Treu, 2004). Analyses of the

combined evolution of the luminosity-size and stellar mass-size relations (Trujillo et al.,

2004; McIntosh et al., 2005) provide similar results on elliptical homogeneity. In fact,

these analyses show that the luminosity-size distribution evolves in a manner that, by

itself, is consistent with a passive evolution of the red early-type galaxy populations

since high z, but they do not find evidence of any strong structural evolution in the

stellar mass-size relation. However, it is important to remark that some recent results

point to an evolution in the mass-size relation for the very massive elliptical galaxies

since redshift z ' 2 (Trujillo et al., 2007; Buitrago et al., 2008; van der Wel et al., 2008).

Weak lensing (Heymans et al., 2006) and optical studies of the Fundamental Plane

of early-type galaxies out to z ∼ 1 (van Dokkum et al., 2001; van de Ven et al., 2003;

Wuyts et al., 2004; di Serego Alighieri et al., 2005; Treu et al., 2005; van Dokkum & van

der Marel, 2007) have traditionally described its evolution in terms of the evolution of

their stellar populations (see, however discussion in di Serego Alighieri et al., 2005). An

important convergent result is the confirmed existence of a population of old, relaxed,

massive (M star > 1011M�) spheroidal galaxies at intermediate zs (z ∼ 1− 2). The K20

survey has first shown (Moriondo et al., 2000) that a high fraction of the so-called Ex-

tremely Red Object sample are in fact old spheroidal galaxies, found out to z ∼ 1, with

formation redshifts of no later than zf ∼ 2.5 − 3.4 if a unique starburst is assumed or

even earlier on if this hypothesis is relaxed (Cimatti et al., 2002). Cimatti et al. (2004)

have identified four massive (M star > 1011M�) fully assembled spheroidal galaxies at

1.6 < z < 1.9 with old stellar populations and Stanford et al. (2004) a larger sample in

HDF-NICMOS data. Otherwise, recent studies of red galaxies in random cosmological

volumes (Bell et al., 2004; Drory et al., 2004; Fontana et al., 2004; McCarthy et al.,

2004; Wiklind et al., 2008) inferred that red massive galaxies existed at all observa-

tional epochs, and that their stellar populations at each epoch were predominantly old.

Mobasher et al. (2005) identified a candidate for a massive, evolved galaxy at z = 6.5.

These convergent results on elliptical homogeneity strongly suggest that i), a population

of massive, relaxed spheroids with old stellar populations (i.e., formed at a redshift of

zf > 2.4) was already at place by z ∼ 1.5 or even by z ∼ 2, ii) this population lacks

of significant structural and dynamical evolution, and, iii), their average luminosity

evolution is consistent with a passive evolution of their stellar populations.

Elliptical galaxies show age effects in their stellar populations, as inferred from the

observed correlation of the α/<Fe> ratios with mass (Thomas et al., 2002; Caldwell

et al., 2003; Bernardi et al., 2003d). More massive elliptical galaxies seem to have older
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means and narrower spreads in the age distributions of their stellar populations than less

massive ones (such effect is also known as the downsizing phenomenon, Thomas et al.,

2005). This result have been confirmed from different results on the FP evolution,

see for example (van der Wel et al., 2004; Treu et al., 2005; di Serego Alighieri et al.,

2005; Faber et al., 2007) and from estimations of the star formation rate for ellipticals

(Jimenez et al., 2005; Juneau et al., 2005; Thomas et al., 2005; Gallazzi et al., 2006;

Clemens et al., 2009). These age effects link elliptical dynamical properties with the

characteristics of their stellar populations, and are another manifestation of the physical

regularities underlying elliptical galaxy populations.

These results on elliptical homogeneity and regularity can be easily interpreted in

the context of a formation scenario where most elliptical mass assembles with dissi-

pation out of gaseous material and their stellar populations form at high z on short

timescales relative to spirals (i.e., the so-called monolithic collapse scenario). How-

ever, this scenario does not recover all the currently available observations on ellipticals

either. Important examples are: i), the growth of the total stellar mass bound up in

bright red galaxies by a factor of ∼ 2 since z = 1 (Bell et al., 2004; Conselice et al., 2005;

Fontana et al., 2004; Drory et al., 2004; Bundy et al., 2005; Faber et al., 2007), implying

that the mass assembly of most ellipticals continued below z = 1, ii), the signatures of

merging activity observed out to intermediate zs (Le Fèvre et al., 2000; Patton et al.,

2002; Conselice, 2003; Cassata et al., 2005; Conselice et al., 2008), in particular of major

dry mergers between spheroidal galaxies (van Dokkum et al., 1998; Bell et al., 2006),

that translate into a relatively high merger rate for massive galaxies even below z = 1,

iii), the need for a young stellar component in some elliptical galaxies (van Dokkum &

Ellis, 2003; van der Wel et al., 2004; Schiavon et al., 2006), or, more particularly, the

finding of blue cores (that is, recent star formation at the central regions), and inverse

color gradients in a 30% - 40% of the spheroidal galaxies in some samples out to z ∼ 1.2

(Abraham et al., 1999; Menanteau et al., 2001, 2004, 2005; Lee et al., 2006), and, iv),

the observation by the Spitzer Space Telescope that an important fraction of massive

galaxies are undergoing at z ∼ 0.7 a period of star formation above their past-averaged

star formation rate (Bell et al., 2005).

So, why we obtain this paradox? Before answering, we would like to address an

important point: a solid definition for galaxy formation. Some misunderstandings have

arisen because of defining galaxy formation with different concepts linked with just one

physical process and using the results to reinforce or discard a model. For example,

stellar age studies have been sometimes used to justify a monolithic collapse scenario,

while merger rates measurements to discuss the hierarchical scenario. We will see that

both physical processes can occur in a ΛCDM universe so although possible, it is

very difficult to really discard one or other model with these analyses. Probably this

problem has its origin on the facility for obtaining direct observational data of both
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physical phenomena. But, in this sense it is necessary to make a more general study,

trying to focus on measurements that really distinguish between models not only to

check the frequency of one physical process. Of course the drawback of this approach

is that this kind of measurements are harder to obtain from direct observations.

Anyway, defining galaxy formation will help us to look for a better observational

approximation and to know the frame where we have to keep our results. A common

proper definition is that one galaxy has ”formed” when around half of this mass was

already assembled (Peebles, 2002; Domı́nguez-Tenreiro et al., 2004). So, we saw that

in ΛCDM model both processes, collapse and hierarchical merging do occur but the

question would be which one of them, if any, is more important than the other and

dictates the time of assembly. At high redshift, assembly with a passive evolution

is postulated by a monolithic collapse scenario, while in hierarchical scenario major

mergers put time for assembly to lower redshifts.

3.4 Summary

The observational results above demand spheroids with passively evolving stellar pop-

ulations and, at the same time, assembling their stellar mass and undergoing some star

formation below z ∼ 1. The question then arises why elliptical galaxies had their star

formation almost quenched at high z and when this happened relative to their mass as-

sembly. The lack of structural and dynamical evolution at intermediate zs of ellipticals

and the high formation redshift of most of their stars could result from the same phys-

ical processes involved in their formation, namely, the occurrence of dissipation mostly

at high z, with further mass assembly at intermediate and lower zs mainly through

non-dissipative processes.

One important clue for explaining how ellipticals were assembled is the very strong

correlations between their photometric and spectroscopic parameters that, as we pointed

out, make these galaxies a homogeneous population. Therefore, the first step in under-

standing how these galaxies formed should be to understand well these how correlations

arise.
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Chapter 4

Analysis of the Simulations

4.1 Introduction

The very first step of our work, and of the most compelling ones, is to select and run

the appropriate simulations in order to achieve our objectives. In what follows we will

explain all the phases from the point of deciding which simulations to run and why, up

to obtain robust samples of elliptical-like-objects. So, this chapter presents the roots

of this thesis. We would discuss all the important steps that have to be done between

these two points and stress up the relevance of the ones that can introduce significant

errors in the final results.

This chapter is organized as follows: the next section, 4.2, describes and discuss

what kind of simulations has been used in this thesis and why. Section 4.3 introduce

the Galaxy-like objects that appear in our hydrodynamical simulations and the different

techniques and problems to identify them. In section 4.4 is explained how Elliptical-like

objects (ELOs) are selected and their two fundamental scales are defined. Section 4.5

goes into detail about the different tools and algorithms used to calculate the physical

properties of ELOs. Finally section 4.6 summarizes the main ideas and results of this

chapter.

4.2 Simulations runs under study

As explained in chapter 2, self-consistent hydrodynamical simulations have a great com-

putational cost so it is very important to decide and program what kind of simulations

will be needed before starting to run them. This is one of the most important steps

when working with cosmological simulations. Having in mind the final goals of the

project while designing it, is crucial for its final success or failure.

The aim of this thesis is to study in depth the structural and kinematical properties of

early-type galaxies, so we want enough resolution to look inside these types of galaxies.

On the other hand we would like to make some reliable statistics. Then we want a
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significant sample of this kind of objects that extend in some orders of magnitude

in mass. Ideally we would like to run a very large box simulation with a resolution

of less than one kpc (i.e. with thousands of millions of particles), but sadly, this is

not possible nowadays even in the best computational centers of the world. Fixing

the number of particles of a simulation, something that is given by the computational

resources available, you can choose between a large box simulation (loosing resolution)

or a small box of great resolution simulation (loosing statistics). In the last years

galaxy formation and evolution have been studied by n-body simulations using these

two different approaches. For a more detailed explanation on this topic and the historical

options in different astrophysical problems see 2.1.

Taking into account all these aspects and considering last works in this field, includ-

ing previous runs with the DEVAcode (see Sáiz et al., 2004; Domı́nguez-Tenreiro et al.,

2004), we decide to go for another approach. We have built the main set of our sample

by running five simulations (EA simulations) using 643 dark matter and 643 baryon par-

ticles, with a mass of 1.29×108 and 2.67×107M�, respectively, to homogeneously sample

the density field in a periodic box of 10 Mpc side. In any run we use the framework of

a flat ΛCDM cosmological model, with ΩΛ = 0.65, Ωbaryon = 0.06 and h = 0.65. These

values are in 1σ of the cosmological concordance model values when simulations were

run, see Spergel et al. (2003) and Tegmark et al. (2004) for details. Observational data

in the last four years has changed very little the general framework of this concordance

model, specially these parameters (ΩΛ,Ωbaryon,h) but for a more precise knowledge of

their exact values (see Spergel et al., 2007; Dunkley et al., 2009). We always used a fixed

smoothing length in physical coordinates that in this case takes the value of ε = 0.0015

(h−1
100Mpc), so the maximum spatial resolution for all these simulations was 2.3 (h−1

65

kpc). Therefore with this size of box and number of particles we reach a resolution high

enough to fulfill our objectives of studying the structure and kinematics of early-type

galaxies. Furthermore to solve also the statistics issue, apart from running up to five

simulations, we have tried to simulate the areas of the universe where ellipticals are

more abundant. The power spectrum normalization, σ8, has been set up to mimic an

active region of the universe (Evrard, Silk, & Szalay, 1990) in which elliptical galaxies

are more frequent. All these simulations also share the same star formation parameters

(ρthres = 6× 10−25 gr cm−3, c∗ = 0.3) and differ in the seed used to build up the initial

conditions.

As important as building the sample is studying the different systematics that we

can have in our results. Consequently we have also run several simulations in order to

check for the four more important ones: variations in the star formation parameters,

variations in the cosmological model, resolution effects and box size. We will try to

discuss their possible importance in all the different results of this thesis. For a general

overview on how these and other systematics errors could affect the results on this thesis,
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see section 6.5.

To test the role of SF parameterization, the same initial conditions have been run

with different SF parameters (ρthres = 1.8× 10−24 gr cm−3, c∗ = 0.1) making SF more

difficult, contributing another set of five simulations (hereafter, the EB simulations).

We have also run a cosmological test simulation (EC simulation) with slight variations

in the cosmological values but with the same star formation parameters as EA.

Concerning spatial resolution we run three simulations (ED simulations). First we

made two simulations that share the same initial conditions, cosmological parameters

and box size but differ in the number of particles. One of them uses the same amount

of particles as all the previous runs (7705), 2 × 643 particles, and the other one uses

eight times more particles (6705), this is 1283 dark matter and 1283 baryon particles,

with a mass resolution of 1.67 × 107 and 2.58 × 106M�, respectively. The smoothing

length used in the low resolution simulation was ε = 0.0015 (h−1
100Mpc) and in the high

resolution simulation was ε = 0.00075 (h−1
100Mpc), hence having a spatial resolution of

2.14 (h−1
70 kpc) and 1.07 (h−1

70 kpc) respectively. We have also run one simulation (7714)

that share all cosmology and SF parameters with EA simulations but with eight times

more particles, in order to have results that can be directly compared with the EA

sample.

We are also interested in testing the effect of increasing the box size, Lbox of the

simulation. It is a well established fact (see, for example, Bagla, 2005) that Lbox affects

the two-point correlation function and the mass function (and, consequently, the global

tidal field is also changed), because reducing Lbox is equivalent to putting a large-scale

cut-off to the power spectrum of perturbations.

An important point to note is that Lbox has an impact on the Rσ = σ8in/σ8eff ratio,

where σ8in is the input normalization parameter in the algorithm used to build-up the

initial conditions of the simulation, and σ8eff is the linear mass variance in spheres of

radius 8h−1 Mpc at z = 0. In fact σ8eff decreases with decreasing Lbox (see discussion in

Sirko, 2005), so that Rσ increases (Power & Knebe, 2006; Gelb & Bertschinger, 1994).

These differences can already be appreciated in the initial conditions as numerically

set by any standard algorithm. We have found that kept σ8in and changing Lbox, the

normalized distribution of initial peculiar velocities changes and convergence is only

attained for Lbox > 100 Mpc. Note that this effect can be compensated for by tuning

σ8in (see below).

As a consequence of the power spectrum cut-off, when Lbox decreases there is a

deficit of massive objects, and the clustering length decreases, so that simulations with

large Lbox ( > 100 Mpc) are required in order to correctly get convergence on the results

for the two-point correlation, σ8eff and mass functions.

However, this does not imply that the modification of these global properties of the

large scale structure has necessarily an impact on the inner properties of the small scale
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systems (galaxies and their halos). This problem has been addressed in detail for dark

matter halos by Power & Knebe (2006). They have established that the box size of the

simulations has an impact on i) σ8eff , ii) the masses of the most massive halos. Both are

reduced as the box size decreases, confirming previous findings. That is, lowering Lbox

implies a reduction of the number of massive systems, that are formed in the more active

environments. Consequently, lower Lbox also implies a deficit of massive environments

(groups and clusters of galaxies) relative to larger Lbox simulations.

These authors also found that these modifications have relatively little effect on the

internal properties of the halos (concentration, spin parameter, triaxiality, see Figures

6 to 11 of Power & Knebe, 2006). There is only a small effect on the spin parameter,

independent of halo mass and Lbox size. This is small: they found that the halo spin

parameter is on average only a 15 percent lower.

These authors interpret their results about shape invariance on the Lbox size (or

power spectrum truncation) in the light of the existence of a universal dark matter mass

profile (Navarro et al., 1996; Manrique et al., 2003, see the two last sections of their

paper). The small effects noted in the spin distribution are interpreted as an imprint of

the angular momentum acquired during the linear growth of the perturbations (Navarro

et al., 2004a). An important point to note is that in their work, Power & Knebe (2006)

use the same input σ8in irrespective the power spectrum cut-off.

Our work has to do with virtual elliptical galaxies, stellar systems placed inside

massive dark matter halos. To our best knowledge, there does not exist by the moment

a study on how Lbox affects the shape and rotation properties of these objects. However,

because their mass assembly process reflects that of dark matter halos (see Chapter 9),

we cannot expect that the impact of decreasing Lbox is that important.

Therefore, to test this point we run two simulations in a periodic box of 20 Mpc

side (twice that of EA and EB runs) and using 8 times more particles (EF1 and EF2

runs) fixing the cosmological and star formation parameters as in EA simulations.

We have also used one simulation with a periodic box of 80 Mpc side (EF3). Cos-

mological parameters were set using last observational results1 (Dunkley et al., 2009).

However due to computational costs this simulation only include hydrodynamical calcu-

lation in a sub-box of 27 Mpc side. The number of dark matter and baryonic particles

in this volume is fixed to obtain the same resolution as for the other EF simulations.

Moreover, in order to do a proper comparison, we will study just a sub-box of 20 Mpc

side of this simulation. It is important to remark that this simulation is the first result

of a major ongoing project in which the full box of 80 Mpc side, including the hydro-

dynamical calculation, is also being simulated. However, as this simulation takes too

long to reach redshift zero and also in order to have some test samples, we are running

a total of nine simulations as the EF3 one and five simulations with an hydrodynamical

1http://lambda.gsfc.nasa.gov/product/map/current/params/lcdm sz lens run wmap5 bao snall lyapost.cfm
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sub-box of 40 Mpc side. These simulations cover different subvolumes of the bigger box

and by the time of closing this thesis, only EF3 has reached redshift zero.

Due to the effect of Lbox on Rσ (see above), one has to be careful when analyzing

the effects of varying Lbox, and try to disentangle as much as possible the effects due

to the changes of the effective normalization (that can be overcome to some extent by

tuning σ8in relative to Lbox), to the changes induced by the presence of longer wave

perturbations as Lbox increases.

The values of the parameters used in each simulation defining the global cosmological

models, star formation parameterization, box side, etc. are given in Table 4.1.

Initial conditions are set at high z as a Monte Carlo realization of the field of pri-

mordial fluctuations in a given cosmological model. For all these simulations they were

performed using the same scheme used by Couchman et al. (1995) which follows the basic

ideas explained in Section 2.2. Concretely, we have used MPGRAFIC (Prunet et al.,

2008) to create the initial conditions of the EF3 run and INITDEVA (Bertschinger,

1995) for the rest of simulations. All the simulations with Lbox = 10Mpc started at

z = 0 and were run up to z = 0 using the sequential version of DEVA, but for the ED

sample simulations which were performed using the parallelized version P-DEVA. ED,

EF1 and EF2 simulations run in an Altix 3700 machine of the Centro de Computación

Cient́ıfica (UAM, Spain)2 up to z = 0 using P-DEVA. EF3 also used P-DEVA code but

run in the Leibniz Supercomputing Centre3. The initial redshift for the EF simulations

was calculated using GRAFIC2 (Bertschinger, 2001). They started before any mode

simulated become non-linear (z = 33 for the EF1-2 runs and z = 50 for the EF3 run

respectively).

All the important information of the simulation is saved at different redshifts in a

file. This file contains a header with all the global parameters concerning the simulation

followed by the positions, velocities, mass, etc. for each particle. We have saved around

40 timesteps for each simulation in our sample at redshifts in which we were interested.

For the simulation 8716 (EB) we have saved around 2000 timesteps to have a high

temporal resolution simulation. This will allow us to perform detailed temporal studies

and videos. In Figure 4.1 it is shown all the gas particles of one of the EA simulations

when it has reached redshift z = 0.

2See http://www.uam.es/investigacion/servicios/computacion/ for more details.
3http://www.lrz-muenchen.de/wir/intro/en/
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Figure 4.1: View of all the gas particles of one of the EA simulations at z = 0. Color of
the gas particles stands for their SPH density.
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4.3 Galaxy-like objects in the simulations

SPH simulations with CDM initial conditions and radiative cooling lead to the formation

of dense groups of baryonic particles that have sizes and masses comparable to the

luminous regions of observed galaxies (Cen, 1992; Katz et al., 1992; Evrard et al., 1994).

If star formation is included, these dense groups are the regions where stars form and

tend to group in Galaxy-like objects (hereafter GLOs, Katz et al., 1996; Domı́nguez-

Tenreiro et al., 2003, for DEVA code). The structure and kinematical properties of

these objects and their formation and evolution are the main topic of this thesis, so

the identification of distinct particle groups at different redshifts underlies all of our

subsequent analysis.

Many different algorithms to identify groups of particles in N-Body simulations have

been proposed. We want to address here the question of how the choice of an algorithm

can affect the properties of GLOs. To do this, we have used two of the most popular

algorithms: FOF (friends-of-friends Huchra & Geller, 1982; Davis et al., 1985) and

SKID (Stadel et al., 1997; Weinberg et al., 1997). With FOF, particles are joined into

groups if the separation to the nearest neighbor is less than a given threshold, called the

linking length, b, which is the only free parameter for this algorithm. We will express b in

units of the mean particle separation. The mean particle separation between N3 baryon

particles uniformly distributed in a simple cubic lattice over a cube box of size L, is L/N .

Then, 1/b3 corresponds to an overdensity, and FOF approximately groups together

particles which lie inside the corresponding level surfaces. On the other hand, SKID is

a multiple-step process. The basic algorithm consists of, first determining the smoothed

density field, then moving particles upward along the gradient of this density field using

a heuristic equation of motion that forces them to collect at local density maxima.

Afterwards, it defines the approximate group to be the set of particles identified with a

FOF algorithm with a linking length, b, and finally, particles that are not gravitationally

bound to the groups identified in the previous step are removed. So, SKID has more

than one free parameter, being the most important ones: the linking length, b, the

number of nearest neighbors used in calculating the density gradients, NSKID
neigh , and just

for gas particles, a minimum density threshold, ρSKIDmin , and a maximum temperature

threshold, TSKIDmax .

To make our study, we have first looked at one of the simplest quantity that char-

acterizes the galaxy populations in the simulations: the mass function. Although, as

pointed above, our aim is not to make a study of all the galaxies that appear in our

simulations, examining this characteristic can show a first idea of the numerical factors

that come into play in the identification of galaxies in cosmological simulations. Also,

this kind of analysis has been used before to compare group identification algorithms

in the context of dark matter halos finding (Bertschinger & Gelb, 1991; Goetz et al.,

1998). Following the work of these last authors, we have run several times the FOF
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and SKID algorithms over the same simulation varying their free parameters (see Table

4.2). We have chosen ED simulations because it will also allow us to control for pos-

sible resolution effects. First of all we have run FOF algorithm using b = 0.1 (run I),

b = 0.2 (run II), b = 0.25 (run III) and b = 0.02 (run IV), in units of the mean particle

separation. The three first values cover the range used in the literature. The last one

is a test run to see what happens if the linking length is decreased up to a few percent

of the mean particle separation. In the ED simulation of 643 baryonic particles and 10

h−1
70 Mpc box, the mean particle separation is 156.25 (h−1

70 kpc). The tests with SKID

were done in the following way: first we study the two more important parameters of

this algorithm, b and NSKID
neigh (runs V, VI, VII, VIII, IX, X, XIII) and after we study

the effects of the density and temperature limits for gas particles, ρSKIDmin and TSKIDmax

(runs XI, XII and XIV). All the runs were done using eight particles as the lower limit

of a group. The same tests have been also done with the ED high resolution simulation

(for which the mean particle separation is 78.13 (h−1
70 kpc)). First we present results for

the 2× 643 particles ED simulation. Afterwards it will be discussed the high resolution

results.

Run Algorithm b N skid
neigh ρskidmin T skidmax

(1) (2) (3) (4) (5) (6)

I FOF 0.1 – – –
II FOF 0.2 – – –
III FOF 0.25 – – –
IV FOF 0.02 – – –
V SKID 0.1 60 0 1× 1030 K
VI SKID 0.1 40 0 1× 1030 K
VII SKID 0.1 20 0 1× 1030 K
VIII SKID 0.2 40 0 1× 1030 K
IX SKID 0.2 20 0 1× 1030 K
X SKID 0.25 40 0 1× 1030 K
XI SKID 0.1 40 0 3× 104 K
XII SKID 0.1 40 103Ωbρcrit 3× 104 K
XIII SKID 0.02 40 0 1× 1030 K
XIV SKID 0.02 40 103Ωbρcrit 3× 104 K

Table 4.2: Parameters for the different test runs of the group finding algorithms.

Results for FOF tests can be seen in Figure 4.2(a). The mass function obtained with

FOF does not depend upon the typical values of b, these are 0.1, 0.2 and 0.25. Even

with a lower value of b, as 0.02, we found no significant variations in the mass function.

Concerning the SKID tests we found that, as well as in the FOF tests, variations of

the linking length parameter do not produce significant changes in the mass function

as long as all the other free parameters are keep constant. However we found a strong

dependence of the mass function upon the resolution at which the density gradients
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are calculated, that is, the number of nearest neighbors used by the SKID algorithm,

NSKID
neigh . A low resolution of the density field (large number of neighbors) produces

preferably large halos, since, there are few density maxima present inside the volume

towards which all the particles are moved. Each of the density maxima will then end up

with a large number of particles, and hence larger groups are formed. On the other hand,

with high resolution of the density field (small number of neighbors), it becomes bumpy,

and, except for the densest regions, each particle will correspond to a density maximum

at its location. In this case the SKID algorithm become close to plain FOF, specially in

the more massive part of the mass function but this bumpy effect make that the number

of low mass halos increases. In Figures 4.2(b) and 4.2(c) we show the relevant results

of the SKID tests. We also found that the temperature and density threshold can play

a key role in the final mass function. Both quantities, specially the temperature, seem

to diminish the amount of low mass groups, indicating that there were some of these

groups that were formed by high temperature and low density particles. As pointed

above this problem is due the way SKID calculates the maximum density points, so it

is important to try to minimize its effects by using these two limits.

Similar conclusions are also observed by Goetz et al. (1998) in their tests of these

algorithms in the context of dark matter halos finding and the reconstruction of the

dark matter halo mass function. The main difference is that the dependence of the

mass function with the linking length parameter is much more important in the context

of dark matter halos. This is because dissipation greatly increases the density of cooled

baryons with respect to the local background. However is important to remark that

even in this situation, we have seen that the mass function depends on the group finding

algorithm and, especially for SKID, in the parameters used.

Once we have studied the mass function obtained from the different algorithms, we

have calculated the center of mass of all the GLOs found in the simulations. Focusing

on the forty more massive GLOs, we have observed that the order of them varies a little

depending on each run and that some of them disappear in high linking length tests

because they are linked to a close bigger GLO. However the center of mass obtained in

general agrees between different tests. Considering that this work is primary interested

in the most massive GLOs of the simulations, we have decided to go one step further

and make a more detailed comparison between the masses of the GLOs obtained by

different algorithms. In order to have a proper mass estimation to compare with, we

have calculated one by one, the real baryonic mass of the fifteen more massive GLOs of

the simulation that are found in all the tests (see next Section, 4.4, for more details on

this calculation for GLOs). Figure 4.3 shows the normalized difference between the mass

given by one of the different algorithm tests, Malg, and the mass calculated manually

object by object, Mman, versus Mman. The results are really interesting. The masses

obtained by the algorithms can differ by more than a 100% in the most massive objects
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and are in general quite far from the real values. The origin of this systematic in the

estimation of mass is due to the presence of satellites. These satellites are close enough

to be not separated from the main object by the algorithms if b is too big. Although

with errors between 1% and 20% (or even 60% in one extreme case), the best results

are obtained by test IV and test XIV, the tests of lower linking length values used for

both algorithms.

We have confirmed that the most basic property of a GLO, as its mass, depends upon

the choice of group finding algorithm and its free parameters. Also we cannot talk about

a better group finding algorithm but about a good selection of the free parameters. In

this framework, we want to notice that analyzing just the mass function can induce to

wrong conclusions about the goodness of the group finding algorithms. For example,

the linking length parameter plays an important role in the final mass of the galaxy-like

objects but this role is not appreciated when the mass function is built. Some direct

measurements, as the mass or the velocity dispersion (Murante et al., 2007), should be

done before arising to any conclusion.

In regard to the high resolution tests we show main results in Figure 4.4. First, FOF

tests give identical mass functions irrespective of the resolution of the simulation. SKID

results are more complex. The dependence of the mass function with b and NSKID
neigh

shows exactly the same trends that we had found before. The density and temperature

thresholds also produce same effects. In other words, high resolution mass functions are

exactly the same as the ones presented in Figure 4.2 but rescaled to a higher resolution.

However, there are some interesting facts that deserve to be mentioned. The number

of neighbors used by the SKID algorithm should be also rescaled depending of the

resolution of the simulation.

We want to stress out the importance of these results in the context of some recent

works that use the mass obtained by these algorithms to study the evolution, merger

history or gas accretion history of galaxy-like objects (see, for example Murali et al.,

2002). Taking into account that in this kind of studies it is impossible to do a one-by-

one object analysis, it is important to try to take into account the possible errors that

may came from the use of these algorithms. The best approximation should be to make

the same study using different parameters of the group finding algorithms to find out

the systematics in the final results.

However, from our analysis we have reached some general conclusions. In the case

of just using the FOF algorithm, we have found that it is better to make the runs with

a low linking length value, between 0.02 and 0.05. Mass function is not significantly

affected by this quantity and the best mass estimations are obtained with low values

of b. Just for the same reasons, we have also found that for SKID the use of low

values of b are preferable too. Concerning, NSKID
neigh , the best option is the one suggested

by Murante et al. (2007). Run SKID using three different values of NSKID
neigh (20, 40
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Figure 4.4: Mass function profiles obtained in test IV (left) and test XIV (right) from
the EC simulations. Red line stands for 2 × 643 particles simulation and blue line for
the 2× 1283 simulation.

and 60 for example) and define a galaxy to be the set of particles which belong to a

SKID group with anyone of the above NSKID
neigh values. We also think that using the

temperature and density thresholds for gas particles is a must, in order to control the

high increase of low mass GLO of high temperature and low density particles that this

method produces. This will be especially important as we go to higher redshifts where

gas is more abundant and can enclose or be adjacent of different clumps of star particles.

Therefore, we encourage using just star particles for GLOs identification at these high

redshifts (see Murante et al., 2007, for similar conclusions).

Finally, all these tests and investigations with the group finding algorithms con-

vinced us to use them just as a tool to obtain the mass centers of the GLOs in our

simulations. We have decided to do a one-by-one analysis of our objects in order to

determine their mass and all their fundamental parameters. Even to optimize calcula-

tions of the coordinates centers of GLOs obtained from the algorithms a sigma-clipping

algorithm was used. This type of algorithm minimizes the phase-space of a group of

particles and helps to obtain better values of the mass center especially in very close

systems that are dynamically linked.

4.4 Building Elliptical-Like-Objects (ELO) Samples

GLOs that appear in DEVA simulation span a range of morphologies: disk-like objects

(DLOs), spheroid or elliptical objects (ELOs) and irregular objects. See Figures 4.5, 4.6

and 4.7 for some visual examples.

We are interested in building a large sample of elliptical-like objects (hereafter ELOs)
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at different redshifts: z = 0, z = 0.5, z = 1 and z = 1.5 redshifts. Obviously we have

studied z = 0 to compare our data with nearby elliptical galaxy observations. We built

our higher redshift samples to study the evolution of this type of galaxies. Our choice

for higher redshift values is also related with the available observations for ellipticals.

ELOs have been identified as those galaxy-like objects having a prominent, dynamically

relaxed spheroidal component made out of stars, with no extended discs and very low

gas content. For this purpose we combined several techniques.

A visual approach allow us to eliminate galaxy-objects suffering major mergers or

with prominent disks. Some examples of this approach can be seen in (4.5) (4.6) and

(4.7). At the same time we used a combination of statistical and numerical techniques.

We built for each GLO a mass versus radius profile for all mass components: hot gas,

cold gas, stars, baryons, dark matter and total. Masses were obtained by calculating the

mass contained in spheres of increasing radius. First one can address for the presence

of large amounts of gas. Also we can look for satellites and any presence of an on-

going merger. In this sense we put the limit for major merger definition when the

quotient between baryon masses of the satellite and the main object was greater than

0.25 (Gottlöber et al., 2001; Solanes et al., 2005). Related with interacting signals, we

have looked for:

• The presence of tidal tails, loops, and shells, which are induced by strong gravi-

tational interaction.

• A single nucleus, which, based on numerical studies, marks the completion of

the merger. This criterion is important because it marks the point at which the

merger should begin to exhibit properties in common with elliptical galaxies.

• The absence of nearby companions that may induce the presence of tidal tails and

make the object appear to be in a more advanced stage of merging.
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4.4.1 The halo and stellar scales of an ELO

Following the identification of an ELO, to characterize its structural and dynamical

properties, two scales have been defined on it: the halo scale, and the stellar scale. Note

that along this work we have used superscripts to mean the different ELO constituents

(total, dark, stars, etc), and subscripts to distinguish between halo (h) or baryonic

object (bo) scales.

The virial halo scale This scale describes the ELO size at the scale of its dark

matter halo. It is usually defined in terms of a characteristic overdensity, ∆c. The

value of ∆c is taken from the solution of a spherical top-hat perturbation under the

assumption that it has just virialized and the model of spherical collapse (Padmanabhan,

1993; Peebles, 1980). The exact calculation of its value is not trivial because it has a

dependence on cosmology. In this work we have used the solution from Bryan & Norman

(1998) for a flat universe:

∆c(z) = 18π2 + 82x(z)− 39x(z)2 (4.1)

where,

x(z) =
Ωm(1 + z)3

Ωm(1 + z)3 + ΩΛ
− 1 (4.2)

We define the virial radius, rvir, as the radius of a spherical volume within which the

mean density is ∆c times the critical density at that redshift. The total mass inside rvir

is the virial mass Mvir. Therefore we obtain very solid characteristic length and mass

parameters at the halo scale.

We will say that the halo scale is well defined for the simulated elliptical as long as

the total and dark matter halo profiles do not have several irregularities due to on-going

mergers up to rvir or satellite infall. In Figure 4.8 several clear examples of well and ill

defined ELOs are shown.

The stellar or galaxy scale This scale is defined by the stellar mass of the ELO,

M star
bo which was calculated using spherical mass profiles. We calculate the stellar mass

inside spheres of different radius, from zero to at least rvir. For each sphere we sum

all stellar masses inside it. In these profiles we see a very characteristic pattern, a fast

grow from lower to higher radius up to a point where the curve seems to flatten out

(see Figures 4.9). We define the radius of the baryonic object, rbo, as the distance from

the center of the object to some point of this flat part of the curve. The mass inside

the sphere of radius rbo is M star
bo . We will say that this scale is well defined as long

as the ELO is not suffering a major merger. This is, the stellar mass profile flattens

out before we found any other GLO that satisfies the major merger criterion defined

upwards. We also need that we can define the characteristic radius without including

any possible satellite that will affect the analysis. Finally we define a more solid length

scale estimator, the effective stellar radius, rstar
e,bo, as the radius enclosing half of the stellar
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mass, M star
bo . This scale estimator is used to make a final filter in the ELO samples. To

avoid the lack of resolution in the internal properties of ELO samples, we selected just

objects that have a rstar
e,bo equal or greater than the resolution of the simulation. We have

also defined a more solid total length scale estimator rstar
90,bo characterized as those radii

enclosing 90% of the M star
bo mass.

The masses used to compare different group finding algorithms in Section, 4.3, called

Mman, was calculated following this method for each object but taking into account all

the baryonic particles (filtered by the gas temperature and density threshold if neces-

sary).

From the analysis of these two scales we have build all ELO samples at different

redshift that will be studied in the following chapters. We have decided to build two

different samples types. The stellar ELO sample type (also defined as -STAR sample),

include all ELOs that are well defined at the stellar scale. ELOs in these samples can

be embedded in a dark matter halo that it is not relaxed, making the halo properties

ill-defined. This happens because the halo is suffering a merger at this scale. In these

cases there can be some other significant stellar objects around the main ELO below

the virial radius. The stellar & halo ELO sample type, include all ELOs that are well

defined at the stellar and at the halo scale. This subsample will be important in order to

study the link between halo and stellar fundamental parameters. The final total number

of ELOs found in each simulation sample is given in Table 4.3. Note that due to their

respective SF implementations, galaxy-like objects formed in EA type simulations tend

to be of earlier type than their counterparts formed in EB type simulations. Moreover,

gas has had more time to lose energy along EB type ELO assembly than in their EA

type counterparts, and, consequently, the former have smaller sizes than the latter (see

discussion in Section 6.2).
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Simulations Scale
Number of ELOs

z = 0 z = 0.5 z = 1 z = 1.5

EA-STAR Stellar 56 56 57 56
EA Stellar & Halo 26 19 21 16

EB -STAR Stellar 26 25 23 24
EB Stellar & Halo 17 14 16 16

EC Stellar & Halo 6 7 7 5

ED (7705) Stellar 7 – – –

ED (6705) Stellar 7 – – –

ED (7714) Stellar&Halo 4 – – –

EF1-STAR (8935) Stellar 31 25 22 18
EF1 (8935) Stellar & Halo 21 – – –

EF2-STAR (8914) Stellar 38 26 18 20

EF3-STAR (2100) Stellar 22 – 14 –
EF3 (2100) Stellar & Halo 11 – 8 –

Table 4.3: The number of ELOs found in the simulations for the different redshifts
analyzed. For each sample, we indicate the number of ELOs well defined at the stellar
scale (-STAR) and the number of these objects that are also well defined at the halo
scale.
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Figure 4.8: Four examples of total mass profiles. Arrows stand for the rvir obtained by
the Bryan & Norman (1998) algorithm (see text for details). In the top, two examples
of well defined ELOs at the halo scale. Bottom Figures show two examples of ELOs
that are not well defined at the halo scale. They are not isolated, making the virial
parameters ill defined.
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Figure 4.9: Four examples of stellar mass profiles. Arrows stand for the rbo obtained
for each ELO as long as it is well defined at the stellar scale. In the top, two examples
well defined ELOs at the stellar scale. Bottom Figures show two examples of ELOs that
are ill-defined at this scale because of merger events.
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4.5 Calculating global properties

We have defined already the two scales that characterize all the global properties of

the elliptical-like objects of our simulations. In order to make the following chapters of

results easier to read and to stress their main findings, this Section describes in detail

the different tools developed to obtain the structural and kinematical information of

each simulated elliptical at its different main scales.

4.5.1 The halo scale properties

In the case of the total mass structure of galaxies, last results from lensing (Koopmans

et al., 2006) have found that the internal part of total matter density profiles can be

described by a power law expression ρtot(r) ∝ r−γ . Following these results, we have built

the total matter density profiles of our elliptical-like objects and fit them to a power

law expression using the least squares fitting technique. We have done this fits up to

the virial radius, rvir and other lower characteristic radius that will be discussed in the

following chapters. In general, we have developed tools to calculate the matter density

profiles by fixing the bin length (lineal or logarithmic) or by imposing a number of

particles in each bin. In the case of this analysis, we found the binning by a logarithmic

scale the most appropriate because of its low noise at the inner and outer parts of the

object.

Concerning the dark matter, spherically averaged dark matter density profiles of re-

laxed halos formed in N-body simulations have been found to be well fitted by analytical

expressions such that, once rescaled, give essentially a unique mass density profile i.e.,

a two parameter family. These two parameters are usually taken to be the total mass,

Mvir, and the concentration, c or the energy content, E. These two parameters are,

on their turn, correlated (i.e., the mass-concentration relation, see, for example Bullock

et al., 2001; Wechsler et al., 2002; Manrique et al., 2003) because the assembly process

implies a given correlation between Mvir and E. Different authors propound slightly

different fitting formulae, see Einasto (1969, Eina) or Navarro et al. (2004b), Hernquist

(1990, Hern), Navarro et al. (1996, NFW), Tissera & Dominguez-Tenreiro (1998, TD),

Moore et al. (1999b) and Jing & Suto (2000, JS), that can be written as:

ρdark
h (r) = ρaver

∆ × c3ρ̃(r/ah)

3g(c)
(4.3)

where ρaver
∆ is the average density within the virial radii, ah is a characteristic radius

and c ≡ rvir/ah is the so-called concentration parameter. Using y = r/ah

ρ̃(y) = y−α(1 + y)−β, (4.4)

where (α, β) = (1, 3) for Hern; (α, β) = (1, 2) for NFW; (α, β) = (2, 2) for TD, and
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β = 3−α, with α left free, for the general formula found by Jing & Suto (2000) (note that

NFW can be considered as JS with α = 1). In these fitting formulae α is the inner slope

(r << ah), the outer slope (r >> ah) is α+β (3 for JS or NFW), so that ah characterizes

the scale where the slope changes. Other interesting scale is r−2, the r value where the

logarithmic slope, d ln ρ/d ln r = −2. We have r−2 = ah(2− α)/(α+ β − 2) for a profile

given by Eq. 4.4, with r−2 = ah(2 − α) for JS and r−2 = ah for NFW. Navarro et al.

(2004b) propound a different fitting formula of the form:

ρ̃(y) = exp(−2µy1/µ). (4.5)

where d ln ρ/d ln r = −2(r/ah)1/µ and r−2 = ah. Note that this last fitting formula

is similar to the Sérsic formula (Eq. 3.1), as Merritt et al. (2005) first pointed out. It

was first used by Einasto (1969), see also Einasto & Haud (1989), so that we will refer

to it as the Einasto model (Eina), in consistency with the terminology used by other

authors (Merritt et al., 2006).

One great advantage of using the formulation stated in Equation (4.3) for the density

profile is that the mass profile function can be easily obtained as

Mdark(r) =
g(y)

g(c)
Mdark

h (4.6)

and for each proposed formulae the g functions can be written as:

g(y) =
y2

2(y + 1)2
(Hern) (4.7)

g(y) = ln(y + 1)− y

y + 1
(NFW ) (4.8)

g(y) =
9y

1 + y
(TD) (4.9)

g(y) = (3− α)−1y3−α
2F1(3− α, 3− α, 4− α,−y) (JS) (4.10)

g(y) =
1

2
(2µ)1−3µγ(3µ, 2µy1/µ) (Eina) (4.11)

where 2F1(a, b, c, d) is the hypergeometric function and γ(a, b) is the lower incomplete

gamma function.

We have used the integrated dark matter density profiles as fitting formulae instead of

the dark matter density profiles themselves because these latter are binning dependent,

more noisy and with fewer points to fit. The optimal fit has been obtained by minimizing

the statistics:

χ2 = ΣN
i=1[logM(ri)− logMdark(ri)]

2/N (4.12)
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where Mdark(ri) is the ELO dark matter mass within a sphere of radius ri centred at its

center of mass, M(ri) is the integrated mass density profile corresponding to the different

formulae above, and the virial radii rvir have been taken as outer boundaries of the fitting

range. The minimum radius for the fit was set at the resolution of the simulation. The

reason of selecting a log− log statistics is mainly because of the difficulty of calculating

proper errors of any quantity from the simulations. Without this normalization, in the

classical form of the χ2 statistics, the higher values of the outer part of the profiles take to

much statistical weight. However, as we have seen before, the main differences between

the different authorś formulae are in the inner parts of the dark matter. Therefore

to improve the fits in the inner part of the mass profiles we have selected a log− log

statistics. An updated version of the MINUIT software from the CERN library has

been used to make these fits as well as any other in this thesis.

The Vcir(r) profiles provide another measure of the mass distribution. We have

to take into account that the gravity interaction in the simulations is modified by a

softening term (see discussion in Chapter 2). Therefore we calculate these profiles using

the following equation:

Vcir(r) =

√
G ·M(r) · r2

(r2 + ε2)1.5
(4.13)

where G is the gravitational constant, M(r) is the mass profile and ε is the softening

used in the simulation. The formal definition of circular velocity is recovered when

ε→ 0. Some examples of these profiles can be seen in Section 5.2.

At the halo scale we also calculate σtot
3,h, as the velocity dispersion at halo scale.

For this calculation all particles (baryonic and dark matter) inside a sphere of radius

rvir were used. To eliminate some possible under resolution effects, particles placed at

a distance lower than the resolution of the simulation from the center were excluded.

This was made in every velocity dispersion calculation made in this work, at all scales.

Velocity dispersion is calculated in the following way, as we know velocity dispersion is

given by the following equation σ2 = v̄2 − v̄2. Situate ELO variables in the center of

mass system coordinates makes v̄2 = 0 so

σ2 = v̄2 =

∑N
i (vi − v̄)2

N − 1
(4.14)

This brings us also the possibility to test our center of mass finding algorithm as we

can check if v̄2 = 0 for the number of particles we have select. This deviation effect

makes corrections of less than 1% in the σ2 calculations. Some examples can be seen in

Section 5.3.
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4.5.2 The stellar scale properties

To quantify the stellar three-dimensional mass density profiles of ELOs, we will fit

them to the JS and Einasto analytical formulae (see Equations 4.4, 4.3, 4.11 and 4.10)

through the statistics defined in Eq. 4.12 where Mdark(< ri) has been replaced by the

ELO stellar mass within a sphere of radius ri, M
star(< ri). As the maximum radius of

these fits we have selected the radius of the baryonic object, rbo, and a more solid total

length scale estimator, rstar
90,bo, characterized as those radii enclosing 90% of the M star

bo

mass. The minimum radius for the fit, as in the dark matter mass profiles fit, was set

at the resolution of the simulation.

Another historical approximation to the study of the structure of the stellar objects

is by assuming that it can be characterized by an ellipsoid with principal axes a ≥ b ≥ c.
There are a few different ways found in the literature to model mass systems as ellipsoids.

They all differ in details, but most methods model them using the eigenvectors from

some form of the inertia tensor (Allgood et al., 2006, see, ). We have computed these

values from the eigenvalues (λ1 ≥ λ2 ≥ λ3) of the inertia tensor of the particles inside a

specific maximum radius rmax, Iij(< rmax) =

N∑
k=1

mk(r
2
kδij + xixj) following González-

Garćıa & van Albada (2005). For an ellipsoid of uniform density,

a =

√
5(λ2 − λ1 + λ3)

2M star
rmax

b =

√
5(λ3 − λ2 + λ1)

2M star
rmax

c =

√
5(λ1 − λ3 + λ2)

2M star
rmax

(4.15)

To check how the 3D shape parameters, a, b and c, depend on the maximum radius

used we compute it, for each baryonic object, at the effective stellar radius, rstar
e,bo, at the

90% stellar mass radius, rstar
90,bo and at the radius of the baryonic object, rbo.

Concerning kinematics at the stellar scale, we calculate velocity dispersion inside

rbo, σstar
3,bo, in a very similar way as the velocity dispersion in the halo scale but just

using stellar particles. As long as rbo is well defined (see above), changes of even a

10% in the radio produce changes lower than 1% in M star
bo and σstar

3,bo. Another relevant

quantity is the anisotropy of the 3D velocity distributions of the ELO sample, defined

as:

βani = 1− σ2
t

2σ2
r

, (4.16)

where σr and σt are the radial and tangential velocity dispersions (σ2
t = σ2

θ+σ2
φ), relative

to the center of the object. Some examples of these profiles can be seen in Section 5.2.

Concerning the organized motion of the elliptical-like objects, we have developed

several tools to measure the possible rotation of these objects. We compute the total

angular momentum, ~L = ~r×~p using all the star particles that satisfies rmax > r > rmin,

where rmin was set at the resolution of the simulation and as rmax we utilized the char-

acteristic radii, rstar
e,bo, rstar

90,bo and rbo, in a similar way as the 3D shape study described
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above. However, once we knew the angular momentum, we have built another set of tools

that also measure the amount of rotation of our elliptical-like objects in order to make

better comparisons with observational data. From our calculation of ~L = (Lx, Ly, Lz),

we determine the main axis of rotation of the simulated ellipticals. In spherical coordi-

nates, the direction of this axis are set by θ = Lz/|~L|, φ = arctan(Ly/Lx), where θ is

referred to as the zenith, colatitude or polar angle, while φ is referred to as the azimuth.

We have rotated the whole system to make this axis the z-axis. This rotation can be

done in several ways, in this work we have used the following matrix:

R =

 1 + (cos(θ)− 1) · cos(φ)2 (cos(θ)− 1) · sin(φ) · cos(φ) − sin(θ) · cos(φ)

(cos(θ)− 1) · sin(φ) · cos(φ) 1 + (cos(θ)− 1) · sin(φ)2 − sin(θ) · sin(φ)

sin(θ) · cos(φ) sin(θ) · sin(φ) cos(θ)


(4.17)

which has been built to make R = 1 whenever θ = 0.

Once we have set the z-axis as the axis of rotation, we have calculated the mean

tangential velocity, Vφ, at the different characteristic radii that we have for our elliptical-

like objects: rstar
e,bo, rstar

90,bo and rbo.

4.5.3 The observational stellar scale properties

In addition, at the stellar scale we measured a observational scale. To compare with

observations we have to try to mimic as much as possible the data that is obtained

through telescopes. This is, we have to take into account projection and concentration

effects. Projected stellar mass, M star
cyl,bo and projected stellar half-mass radii4, Rstar

e,bo,

are calculated again by building a mass profile. We first select the particles of the

simulation for the study using a sphere of radius rbo (i.e.; a limiting radius for each

object). Nevertheless this time we want a projected mass profile. For this, instead

of using spheres as in previous cases, we have to choose a direction of projection and

place cylinders of increasing radii along it. We sum all stellar mass particles inside each

cylinder to obtain the projected mass profile, Mcyl(R). The observationally relevant

size scales are the projected half-mass radii. They are determined from Mcyl(R), the

integrated projected mass density in concentric cylinders of radius R for the different

constituents. For example, Rcb
e,bo and Rstar

e,bo are the projected radii where M cb
cyl(R) and

M star
cyl (R) are equal to M cb

cyl,bo/2 and to M star
cyl,bo/2, respectively. Note that, as rbo is used

to cut a sphere that afterwards is being projected, we have that M star
cyl,bo wM star

bo .

Before going any further on observational scale parameters, it is important to clarify

an important point. The first step in calculating the observational parameters described

here is the definition of a line-of-sight axis. To account for the possible projection

effects we have generated one hundred random projections. We have calculated all

4Hereafter we will use capital R to mean projected radii



4.5 Calculating global properties 75

the observational scale parameters for these one hundred random projections for each

object to really include all the range of possible observational data. The random line of

sight axes have been set by the generation of random pairs of the spherical coordinates

(θ,φ). The system is rotated to make the axis defined by these coordinates the z-

axis using the rotation matrix described above (see Equation 4.17). For purposes of

clarity, we reserve the formal definition terms used in this Section for the

observational parameters (as M star
cyl,bo, Rstar

e,bo, etc.) for the averages values over

these one hundred random projections. Anyway, in the following chapters of this

thesis we will remind this definition if necessary and indicate properly any other uses.

The next step is the description of the projected mass density profiles. Authors now

agree that the Sérsic law given in Eq. 3.1 (Sérsic, 1968) is an adequate empirical repre-

sentation of the optical surface brightness profiles of most ellipticals (see, for example,

Caon et al., 1993; Bertin et al., 2002). Assuming that the stellar mass-to-light ratio

γstar does not appreciably change with ELO projected radius R, the projected stellar

mass profile, Σstar(R) can be taken as a measure of the surface brightness profile and

be written as

Σstar(R) = γstarI light(R). (4.18)

One can then expect that Σstar(R) can be fitted by a Sérsic-like law. Following

Equation (3.1), the Sérsic law for the projected stellar mass profile can be written as

Σstar(R) = Σstar
0 exp[−(R/Rstar

s )1/n] (4.19)

where Rstar
s is the Sérsic scale parameter, n the Sérsic shape parameter and Σstar

0 is

projected central stellar mass density. But this equation can be rewritten in terms of

more familiar factors, as the projected stellar half-mass radius, Rstar
e,bo, and the projected

stellar mass density within this radius, Σstar
e ,

Σstar(R) = Σstar
e exp[−bn((R/Rstar

e )1/n − 1)] (4.20)

where we have introduced the term bn, defined as Rstar
e = Rstar

s (bn)n and Σstar
0 =

Σstar
e exp[bn] and that can be obtained by bn = 2n − 1/3 + 0.009876/n (Prugniel &

Simien, 1997). We have calculate the Σstar(R) profiles by averaging on concentric rings

centered at the projection of the center-of-mass of the corresponding ELO. Obviously

we are interested in how the projected structure of our elliptical-like objects adjust to

the Sérsic profile so we have developed all the necessary tools to do it. The fitting set of

parameters depend on the methodology used to obtain them (see interesting discussions

in Lima Neto et al. 1999 and Aceves et al. 2006). Therefore some remarks on how our

fits have been made are in order. Since the projected densities are binning dependent

and somewhat noisy, the integrated projected mass density in concentric cylinders of
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radius R and mass M star
cyl (R) = 2π

∫ R
0 Σstar(R′)R′dR′ has been used as a fitting function,

instead of Σstar(R) itself. Finally, using the formulation of Equation (4.20) for the Sérsic

law we can obtain the following equation for the projected mass profiles:

M star
cyl (R) = M star

cyl (Rmax)
P [2n, bn(R/Rstar

e )1/n]

P [2n, bn(Rmax/Rstar
e )1/n]

(4.21)

where P [a, x] is the regularized gamma function. In this case we have used the statistics

defined as

χ2 = ΣN
i=1[Mcyl(Ri)−M star

cyl (Ri)]
2/N (4.22)

since we want to directly compare with observational results. However we have also

studied the effects of using the statistics stated in Eq. (4.12).

Concerning the fitting range, we have adopted an outer boundary Rmax such that

the corresponding surface brightness I light(Rmax) (see Eq. 4.18) gives the standard value

of µB(Rmax) = 27 mag arcsec−2 which is a typical limit of resolution in the Johnson B

Band for nowadays telescopes (D’Onofrio, 2001). To obtain I light in L�pc
−2 we have

used that log I light
B (Rmax) = −0.4[µB(Rmax)−kB] taking kB = 27 for nearby observations

in the Johnson B band (Jorgensen et al., 1996). Using these parameters we obtain a

surface brightness limit of I light
B (Rmax) ' 1L�pc

−2. Moreover, the values for the stellar

mass-to-blue-light γstar
B span a range from γstar

B = 2 to 12, depending on the details of its

determination (see discussion in Mamon &  Lokas, 2005a), and best values of γstar
B = 5

to 8. Their geometric mean γstar
B = 6.3 and the lower and higher best values have been

used to make the fits. These limits translate into Σstar
lim = 6.32× 1012M�/Mpc2 for the

best value and 5×1012M�/Mpc2 and 8×1012M�/Mpc2 for lower and upper γstar
B limits.

We will call the outer boundary obtained from this method, R27.

Just as in the 3D case of the stellar object, we have used another classic tool to

study the shape of the projected simulated galaxy and compare it with observations.

We have calculated the apparent ellipticity, ε of the projected mass profiles. Concerning

the point of view, we have calculated ε for one hundred random projections and also

for a point of view chosen to be perpendicular to the spin angular momentum vector

of the stellar matter because we are interested in studying the shape versus rotation

relation (see Section 3.2). This particular point of view should maximize the effects of

rotation where this is present (see Binney, 2005; Burkert & Naab, 2005). We project

the particle distribution along the line of sight to derive the ellipticity for each point

of view. Following the same approach used to obtain the 3D shape parameters, we

compute ε from the eigenvalues (λ1 ≥ λ2) of the projected inertia tensor of the particles

inside a specific maximum radius, where ε = 1−λ2/λ1. We will also analyze the effects

of selecting different maximum radius for computing ε as Rstar
e,bo or Rstar

90,bo.

We have measured the stellar line-of-sight velocity and the stellar velocity dispersion

profiles, V star
los (R) and σstar

los (R), along one hundred random projections for all ELOs in
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the sample. We have taken into account only star particles as this quantity is measured

through stellar spectra or other observables, as the planetary nebulae, linked with stars

(observational profiles can be found, for example in Douglas et al., 2007). Some examples

for our ELOs can be seen in Section 5.2.

Obtaining an equivalent to the observational central l.o.s velocity dispersion, σstar
los,0,

is not straightforward. Again, the direction of projection has been selected and the

particles are binned using cylinders of increasing radii. We compute it by calculating

the accumulated velocity dispersion just using the velocity component along the line

of sight. To improve the drawback of resolution, the maximum of all these values

for different radii up to stellar effective radii, is chosen as the line-of-sight velocity

dispersion, σstar
los,0. To eliminate some possible under resolution effects, particles placed

at a distance lower than the resolution of the simulation from the center were excluded.

To mimic other observational techniques used in stellar kinematics of elliptical galax-

ies, we have measured these profiles placing a slit along the major and minor axes of

projected ELOs, where the major axis is defined as that orthogonal to the ELO spin

vector projected on the plane normal to the LOS, and the minor axis is parallel to the

spin projection onto the plane of the sky (see Figure 4.10). Only those particles below

rbo and above the resolution of the simulation are selected. In this way we obtain the

classical Ṽ star
los (R) and σ̃star

los (R) obtained in observations (see for example Hau & Forbes,

2006). Some examples can be seen in Section 5.3.

Figure 4.10: Slit position to mimic observational observations and compute stellar kine-
matic profiles.

Finally, we are interested in the maximum of the velocity curve, Vmax, of these

line-of-sight velocity profiles. This quantity has been largely used as an observational

indicator of the amount of rotation in ellipticals (see discussion in Section 3.2). As with

the projected ellipticity, we have used a point of view chosen to be perpendicular to

the spin angular momentum vector of the stellar matter which maximizes the effects

of rotation where this is present (see above). We have placed a slit along the major

axis of the projected system and we have obtained the projected velocity and velocity

dispersions curves. The value of Vmax is obtained from the mean value of the maximum



78 Chapter 4. Analysis of the Simulations

velocity (positive) and the minimum velocity (negative) of the profile inside Rstar
e,bo and

Rstar
90,bo.

4.6 Summary

This chapter describes a set of samples of virtual ellipticals, formed in different cosmo-

logical simulations roughly consistent with observations. The normalization parameter

has been taken slightly high, σ8 = 1.18, as compared with the average fluctuations of

2dFGRS or SDSS galaxies to mimic an active region of the Universe. Newton laws and

hydrodynamical equations have been integrated in this context, with a standard cooling

algorithm and a star formation parameterization through a Kennicutt-Schmidt-like law,

containing our ignorance about its details at sub-kpc scales. No further hypotheses to

model the assembly processes have been made. Individual galaxy-like objects naturally

appear as an output of the simulations, so that the physical processes underlying mass

assembly can be studied. Five out of the total simulations (the EA type simulations)

share the SF parameters and differ in the seed used to build up the initial conditions.

To test the role of SF parameterization, the same initial conditions have been run with

different SF parameters making SF more difficult, contributing another set of five sim-

ulations (the EB type simulations). We have also run different simulations in order to

test the effect in our results of different parameters as the cosmological model (EC ),

resolution (ED) and box size (EF ).

We have seen that the search for GLOs in hydrodynamical simulations and the study

of their properties is not a trivial issue. The group finding algorithms give different

results depending on the parameters used. In this context we have obtained from our

analysis some results that will help in order to minimize these effects and to obtain more

robust identifications. However we have decided to go for an object-by-object study of

the most massive GLOs of the simulations in order to build our elliptical-like object

samples. Although this is a really more tedious work, it guarantees the robustness of

our samples.

During this object-by-object analysis we have studied the halo and stellar scale

of GLOs and selected those satisfying the ELO identification criteria. In all these

simulation ELOs have been identified as those galaxy-like objects having a prominent,

dynamically relaxed spheroidal component made out of stars, with no extended discs

and very low gas content. This stellar component is embedded in a dark matter halo

that contributes an important fraction of the mass at distances from the ELO center

larger than ∼ 10 − 15 kpc. ELOs have also an extended halo of hot, diffuse gas. We

have described all the analysis done in order to get robust ELO samples. Then, at the

end of this phase, we have obtained several ELOs in our different simulation samples

that are well defined by a characteristic radius at each scale, the virial radius, rvir and
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the baryonic object radius, rbo. These two radius define two characteristic masses, the

virial mass, Mvir, and the stellar mass of the object, M star
bo . Finally we have developed

a set of tools in order to study the structure and kinematics of these objects at the

different scales and to compare them with observational data.

To help the reader, in Table 4.4 and Table 4.5 we give a list of the parameter names

and symbols introduced in this chapter to be used in the following ones.
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Name Symbol

Halo scale parameters

Virial mass Mvir

Virial radius rvir

Dark mass inside virial radius Mdark
h

Baryon mass inside virial radius Mbar
h

Cold baryon mass inside virial radius M cb
h

Stellar mass inside virial radius M star
h

Total half-mass radius rtot
e,h

Cold baryon half-mass radius rcb
e,h

Stellar half-mass radius rstar
e,h

Einasto shape parameter µ
Total 3D velocity dispersion σtot

3,h

Baryonic-object scale parameters

Baryonic object radius rbo

Stellar mass M star
bo

Cold baryon mass M cb
bo

Stellar half-mass radius rstar
e,bo

Stellar 90%-mass radius rstar
90,bo

Cold baryon half-mass radius rcb
e,bo

3D ellipticity ε3D

Mean stellar 3D velocity dispersion σstar
3,bo

tangential stellar velocity Vφ
Observational baryonic-object scale parameters

Projected stellar half-mass radius Rstar
e,bo

Projected stellar mass M star
cyl,bo

Mean projected stellar mass density within Rstar
e,bo Σstar

e

Projected 27 mag × arcsec−2 radius Rstar
27

Sérsic shape parameter n
Stellar projected ellipticity ε
Central LOS stellar velocity dispersion σstar

los,0

Maximum of the velocity curve Vmax

Table 4.4: Parameter names and symbols. See text for details.
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Profiles

Name Symbola

Mass profile M(r)
Circular velocity profile Vcir(r)
3D velocity dispersion profile σ3D(r)
Anisotropy profile βani(r)
Projected mass density profile Σ(R)
Line-of-sight velocity profile Vlos(R)
Line-of-sight velocity dispersion profile σlos(R)

Ratios

Ratio definition Ratio symbol

GMvir/(σ
tot
3,h)2rtot

e,h cf

rtot
e,h/r

star
e,bo crd

rstar
e,bo/R

star
e,bo crp

(σtot
3,h)2/σstar

3,bo)2 cvd

(σstar
3,bo)2/3(σstar

los,0)2 cvpc

GMvir/3(σstar
los,0)2Rstar

e,bo = cFcrdcrpcvdcvpc cvir
M

Table 4.5: Profile and ratio names and symbols.
(a) To specify the constituent, a superindex has been added in the text to the profile
symbols: dark for dark matter, bar for baryonic matter, hb just for hot baryons, cb for
cold baryons and star for stars. For example M star(r) for the stellar mass profile.
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Results





Chapter 5

Ellipticals at z = 0: Profiles 1

5.1 Introduction

In what follows, we present our work on the structural and kinematical description of

our simulated nearby ellipticals (z = 0). The information about position and veloc-

ity distributions of the ELO particles of different kinds (dark matter, stars, cold gas,

hot gas) provided by the simulations, allows a detailed study of the parameters char-

acterizing their structure and dynamics. This Chapter is focused on the structural

and kinematical profiles of the different components, dark matter, star and gas, of the

z = 0 samples. Next Chapter would focus on the study of the different relations of the

fundamental parameters that characterize these profiles.

All this study has been done for the different simulations discussed in 4.2. However

for the sake of clarity, in this and in the following chapter we would center our analysis

on the EA-Z0 and EB -Z0 ELO main samples. We would discuss deeply robustness of

results and possible caveats between all the samples at the end of the next chapter 6.5.

The organization of this chapter is as follows: Next section 5.2 is focused on the

3D and 2D structural profiles and we would try to address the important issue of the

amount and distribution of dark, stellar and total matter in virtual ellipticals. In section

(5.3) we would focus on the kinematical profiles trying to deepen into the kinematics

of the dark matter component and its relationship with the kinematics of the bright

matter component. Finally in Section (5.4) we present our conclusions.

5.2 Structure Profiles

A quantitative description of ELO mass distributions is given by their 3D density profile

and the structure their constituent particles. We first address the structure of the

baryonic particles. To help the reader, we remind that in Table 4.4 and Table 4.5 a list

1Based on Oñorbe, Domı́nguez-Tenreiro, Artal, & Serna (2006); Oñorbe, Domı́nguez-Tenreiro, Sáiz,
& Serna (2007)
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of the parameter names and symbols used in this thesis can be found.

5.2.1 Three Dimensional Structure for Gas Particles

The gas structure is drawn in Figure 5.1 for the second more massive object formed in

a EB -Z0 type simulation. The 3D density at a given distance, r, from the center of the

object has been calculated by binning on concentric spherical shells around r. In this

Figure, the line is the density profile of dark matter around the object, multiplied by

Ωb/Ωm. Points represent gas density at the positions of SPH particles, and colors stand

for gas particle temperatures according with the scale at the bottom of the Figure.

Figure 5.1: 3D gas (points) and dark matter (blue line) density for a typical ELO. Note
the dense cold gas clumps embedded in the diffuse hot gas component. See text for an
explanation. This figure is courtesy of A. Sáiz.

We see in this Figure that very few gas is left at positions with r ≤ 30 kpc where stars

dominate the mass density, that cold gas at r ≥ 30 kpc is dense and clumpy, while hot

gas (that is, gaseous particles with T > 3× 104K) is diffuse with an almost isothermal

component at 100 kpc ≤ r ≤ 400 kpc, and a warm component at the outskirts of the

configuration, reaching outside the virial radius (395.0 kpc). Two scales stand out in

this configuration: the ELO scale or stellar component, with a size in this case of ∼ 30

kpc, and the halo scale, a halo of dark matter of 395.0 kpc. Cold dense gas particles
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are associated in most cases with small dark matter halos (not seen in the Figure);

both gaseous particles in cold clumps and dark matter particles in their (sub)halos

are shocked particles, using the terminology of the adhesion model (see, for example,

Vergassola et al., 1994). The configuration illustrated by this Figure is generic for ELOs:

we can distinguish an ELO or baryonic object scale, with typical sizes of no more than

∼ 10 - 40 kpc, and the halo scale, a halo of dark matter typically ten times larger in

size.

Figure 5.2: Upper panel: the cosine of the angle formed by the position and the velocity
vectors for each gaseous (green circles) and stellar (starred red symbols) particle belong-
ing to a typical ELO. Filled (open) symbols stand for particles in (counter) co-rotation
with the small inner disc. This figure is courtesy of A. Sáiz.

5.2.2 Stellar and Gaseous Particle Orbits

ELO constituent particles of different kinds travel on orbits that have different charac-

teristics. To analyze this point, in the upper panel of Figure 5.2 we plot, for each star

particle and each gaseous particle of a typical ELO, the cosine of the angle formed by

its position (~ri) and its velocity (~vi) as a function of ri. Positions and velocities have

been taken with respect to the center of mass of the main baryonic object. In this plot

radial orbits have cosines = ±1, while circular orbits have cosines = 0. Starred (circular)

symbols stand for stellar (gaseous) particles. We see that cold gas particles at r ≤ 4
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kpc form a disc in coherent circular motion; filled (open) symbols represent particles

in co-rotation (counterrotation) with respect to this small disc. We can also see that

stellar particle orbits at ≤ 3 kpc scales do not show any preference, while those further

away, as well as gaseous particles outside the disc, show a slight tendency to be on

radial orbits providing anisotropy to the velocity dispersion. Stellar particles constitute

a disordered or dynamically hot component, showing an important velocity dispersion,

and, also, in some cases, a coherent net rotation. In 5.3 these issues will be addressed

in detail.

5.2.3 Dark Matter Profiles

All our virtual ellipticals are embedded in a well defined dark matter halo up to the

virial radius. As we have seen in Section 3.2, pure N-Body simulations had played a very

important role in the study of the properties of these halos, and different authors had

propound different analytical fitting formulas such that, once rescaled give essentially

a unique mass density profile. However, when processes other than gravitational are

involved in mass assembly (for example, cooling or heating), the dark matter density

profiles could be modified (see Blumenthal et al., 1986; Dalcanton et al., 1997; Tissera &

Dominguez-Tenreiro, 1998; Gnedin et al., 2004). To analyze this point, in Figure 5.3 we

plot the dark matter density profiles for several typical ELOs, along with their best fit

to different analytical profiles: Einasto (1969, Eina) or Navarro et al. (2004b), Hernquist

(1990, Hern), Navarro et al. (1996, NFW), Tissera & Dominguez-Tenreiro (1998, TD),

Moore et al. (1999b) and Jing & Suto (2000, JS). All the details of the fitting procedure

and the exact parameterization of these profiles can be found in 4.5. As a test to check

the consistency of the fits, we have compared the virial effective radius, rtot
e,h, and the

virial mass, Mvir, obtained from the different fits versus the ones obtained directly from

the profiles and find very similar results.

Note in Figure 5.3 that the quality of the fits differs from one analytical profile to

another. To quantify this effect, in Figure 5.4 we plot the distributions of the χ2 per

d.o.f. statistics, normalized to (logMvir)
2, resulting from the fits to the different profiles

above. We see that the lower χ2 per d.o.f. values generally correspond to either the

Eina or the JS profiles, with the TD profiles in the third position and NFW profiles

in fourth. In Figure 5.5 we draw the values of the µ (for Eina profiles) and α (for JS

profiles) slopes corresponding to the optimal fits of EA-Z0 sample DM halos. A slight

mass effect can be appreciated with lower mass ELOs having steeper DM halos than

more massive ones, presumably due to a more important pulling in of baryons onto

dark matter as they fall to the ELO center with decreasing ELO mass. That is, massive

halos are less concentrated than lighter ones, i.e., the mass-concentration relation. In

any case, the profiles are always steeper than α = 1 (i.e., the NFW profile; see Mamon

&  Lokas, 2005a; Stoehr, 2006).
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Figure 5.3: Dark matter density profiles (black full line) for several typical ELOs from
EA-Z0 and EB -Z0 samples along with their best fits to different analytical profiles:
NFW (red point line), TD (blue long-dashed line), JS (green short-dashed line) and
Eina (magenta point-dashed line).

To further analyze this effect, we plot in Figure 5.6 the ρ−2 density parameter versus

the r−2 scale obtained from fits to the Einasto model. Green triangles are measurements

by Navarro et al. (2004b) onto halos formed in N-body simulations and the green line is

their best fit. We see that at given r−2, ρ−2 is higher in our hydrodynamical simulations

than in those of Navarro et al. (2004b), presumably due to the pulling in of dark matter

by baryon infall. We also see that at given Mvir, r−2 is shorter in hydrodynamical

simulations than in purely gravitatory ones, by the same reason. It is worth to mention

that in the work of these authors, the virial radius and virial mass is defined by fixing

an overdensity of ∆c = 200, which is much greater than the one obtained from Bryan

& Norman (1998) algorithm (see details in Section 4.4.1) for EAand EBcosmologies

∆c 106. This issue produces lower virial masses and radius. Virial masses of our ELO
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Hern

NFW

TD

JS

Eina

Figure 5.4: The distributions of the χ2 per d.o.f., normalized to the logarithm of their
respective mass square, for the fits of the DM density profiles of ELO halos (EA-Z0 and
EB -Z0 samples) to different analytical profiles.

samples plotted in Figure 5.6 have been adjusted to this issue. In addition, our test fits

using a much shorter radius as the maximum limit of the fit, lead to very similar r−2

and ρ−2 values and exactly the same conclusions.
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Figure 5.5: Left panel: the optimal inner slope α of the general Jing & Suto profile
for the DM halos of ELOs (green filled squares) and the µ coefficient of the Einasto
analytical profile (magenta filled circles), versus their virial mass for EA-Z0 sample
ELOs. Right panel: zoom of the α versus virial mass plot to clarify the mass effect.

Figure 5.6: The ρ−2 density parameter versus the r−2 scale obtained from fits to the
Einasto model, for ELOs in both the EA-Z0 sample (filled red circles) and the EB -Z0
sample (open blue circles). Green triangles are measurements by Navarro et al. (2004b),
onto halos formed in N-body simulations, with its fit by (Mamon &  Lokas, 2005a) (green
line). Numbers correspond to the logarithms of the virial masses (in units of M�) of
halos formed in different simulations, according with their respective colors.
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5.2.4 Baryonic Three-Dimensional Mass Density Profiles

We first analyze the baryon distribution at the ELO scale, where the main contribution

to the mass density comes from stars. We lack of any observational input on how the

three-dimensional stellar-mass density profiles ρstar(r) can be, except for a deprojection

of the Sérsic profiles (Prugniel & Simien, 1997; Lima Neto et al., 1999). In Figure 5.7 we

plot ρstar(r) for ELOs in the EA-Z0 sample. Different colors have been used for ELOs

in different mass intervals and a clear mass effect can be appreciated in this Figure,

and particularly so at the inner regions, where at fixed r/rvir the stellar-mass density

of less massive ELOs can be a factor of two or so higher than that of more massive

ones. This means that the mass homology is broken in the three-dimensional stellar

mass distribution.

Figure 5.7: Three-dimensional stellar mass density profiles for ELOs in the EA-Z0
sample: green dashed lines, ELOs with Mvir < 1.5× 1012 M�; orange point lines, ELOs
with 1.5× 1012 M� ≤ Mvir < 5× 1012 M�; blue full lines: ELOs with Mvir ≥ 5× 1012

M�. The stellar mass density profiles show homology breaking.

Following the method described in Section 4.5, we fit the stellar three-dimensional

mass density profiles of ELOs to JS and Einasto analytical formulas. The quality of the

fits is illustrated in Figure 5.8, and in Figure 5.9 the values of the χ2 p.d.o.f. statistics

are given, normalized to logM star
bo . Both Figures show that these profiles describe

adequately well the spherically-averaged stellar mass distribution in three dimensions,

even if with very small r−2 values.

To study the possibility that the homology in the dark- versus bright-mass distribu-

tion is also broken, the stellar-to-dark density ratio profiles

f star(r) = ρstar(r)/ρdark(r) (5.1)
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Figure 5.8: The stellar mass profiles for 4 typical ELOs in EA-Z0 sample (black contin-
uous lines) and their optimal fits to Einasto profiles (magenta point-dashed lines) and
JS profiles (green dashed lines).

are plot versus the radii normalized to virial radii (Figure 5.10). We see that there is a

clear mass effect at the inner regions, with the stellar mass distribution relative to the

dark mass one less concentrated with increasing ELO mass. For example, in Figure 5.10

we see that the fraction of the ELO virial volume where f star(r) > 1, is smaller as the

ELO mass grows; also, at fixed r/rvir, f
star(r) increases with decreasing ELO mass. So,

the homology is broken in the three-dimensional stellar-to-dark mass distribution, a fact

that could be important to explain the tilt of the observed FP (see Section 6.2.

To further analyze this point and make the comparison with observational results

easier, the dark-to-stellar mass ratio profiles, Mdark(r)/M tot(r), are drawn in Figure 5.11

for the same ELOs, with the radii in units of the three dimensional stellar half-mass

radii, rstar
e,bo. We see that there is, in any case, a positive gradient, and again a clear mass

effect, with a tendency of the dark matter fraction at fixed values of r/rstar
e,bo to be higher
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Figure 5.9: The χ2 statistics (Eq. 4.12) corresponding to the fits of the stellar mass
profiles for ELOs in the EA-Z0 sample Einasto profiles (magenta filled circles) and JS
profiles (green filled squares).

as the mass scale increases. To be more quantitative and compare with observational

data, we plot in Figure 5.12, left panel, the mean fraction of dark-to-total projected

masses at R/Rstar
e,bo = 1 for ELOs in the EA-Z0 and EB -Z0 samples, versus their stellar

masses. We have computed this value for one hundred random projections. The error

bars in the plot represent the dispersion over all these values. The differences among

results for both samples come from the smaller Rstar
e,bo values of EB -Z0 sample ELOs as

compared with their EA-Z0 counterparts (see discussion in Section 5.4). Green triangles

with error bars are results from integral field SAURON data and models by Cappellari

et al. (2006). We see that these empirical determinations of the dark matter fraction at

the center of ellipticals are consistent with the values found in ELOs of both samples,

including its growth with the mass scale.

In the right panel of Figure 5.12 we give the gradients of the Mdark
cyl (R)/M star

cyl (R)

profiles ∇lΥ:

∇lΥ =
Rstar

e,bo

(Rout −Rin)

(
Mdark

cyl (Rout)

M star
cyl (Rout)

−
Mdark

cyl (Rin)

M star
cyl (Rin)

)
(5.2)

as a function of their stellar masses. Green triangles with error bars are the empirical

mass-to-light gradients as determined by Napolitano et al. (2005) for EGs with isophotal

shape a4 × 100 < 0.1, that is, boxy ellipticals. We have used as inner and outer radii

Rin/Rstar
e,bo = 0.5 and Rout/Rstar

e,bo = 4, roughly the average values of the inner and outer

radii these authors give in their Table 1.

We see that there is a mass effect and that our results are consistent with those found

by these authors in the range of stellar mass values our samples span, especially when
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Figure 5.10: The stellar-to-dark mass density profiles for ELOs in the EA-Z0 sample:
green dashed lines, ELOs with Mvir < 1.5 × 1012 M�; orange point lines, ELOs with
1.5× 1012 M� ≤Mvir < 5× 1012 M�; blue full lines: ELOs with Mvir ≥ 5× 1012 M�.

we consider that ELOs in our EA-Z0 and EB -Z0 samples are boxy (see Section 5.3.2).

A SF effect in the stellar mass distribution also appears in Figure 5.12, again due to the

compactness of the EB -Z0 sample ELOs relative to their EA-Z0 sample counterparts.

We now turn to analyze the baryon space distribution at halo scales. To have an

insight on how baryons of any kind are distributed relative to the dark matter at the

halo scale and beyond, the baryon fraction profile

fbar(r) = ρbar(r)/ρtot(r), (5.3)

where ”bar” stands for baryons of any kind (i.e., stars, cold gas and hot gas) and

”tot” stands for matter of any kind (i.e., dark plus baryons of any kind), is drawn in

Figure 5.13 for ELOs in the EA-Z0 sample (red full lines) and in the EB -Z0 sample (blue

dashed lines) in the same range of virial mass, 1.5 × 1012M� ≤ Mvir < 5 × 1012M�.

Despite individual characteristics, the fbar(r) curves show a typical pattern in which

their values are high at the center, then they decrease and have a minimum lower than

the global value, fbar
cosmo ≡ Ωb/Ωm = 0.171, at a radius rbar

min, then they increase again,

reach a maximum value and then they decrease and fall to the fbar
cosmo value at a rather

large r value, larger than the corresponding virial radii. This result, i.e., that EGs

are not baryonically closed, is also indicated by recent X-ray observations (Humphrey

et al., 2006). Notice (Figure 5.14) that the increase of fbar(r) at r > rbar
min is mainly

contributed by hot gas, almost absent at r < rbar
min, indicating that rbar

min separates the

(inner) region where gas cooling has been possible from the (outer) region where gas

has not had time enough to cool in the ELO lifetime. Note also in Figure 5.14 that an
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Figure 5.11: The fraction of dark-to-total mass profiles, Mdark(< r)/M tot(< r) for
ELOs in the EA-Z0 sample; green dashed lines, ELOs with Mvir < 1.5 × 1012 M�;
orange point lines, ELOs with 1.5 × 1012 M� ≤ Mvir < 5 × 1012 M�; blue full lines:
ELOs with Mvir ≥ 5× 1012 M�. Radii are normalized to the 3D stellar half-mass radii.

important amount of hot gas is outside the spheres of radii rvir, that is, it is not bound

to the self-gravitating configuration defined by the ELO halo. In fact, the mass of hot

gas increases monotonically up to r ' 4rvir, and maybe also beyond this value, but it is

difficult at these large radii to properly elucidate whether or not a given hot gas mass

element belongs to a given ELO or to another close one (to alleviate this difficulty, only

those ELOs not having massive neighbors within radii of 6×rvir have been considered to

draw this Figure). Another important result is that the hot gas mass fraction, relative

to the cold mass fraction at the ELO scale, increases with Mvir at given r/rvir, and the

differences between massive and less massive ELOs can be as high as a factor of ∼ 2 at

r/rvir < 4. We see that, in massive ELOs, this excess of baryons in the form of hot gas

at the outer parts of their configurations, compensates for the lack of baryons in the

form of stars at the ELO scales.
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Figure 5.12: Left: the fraction of dark-to-total mass at R/Rstar
e,bo = 1 versus the ELO

stellar masses. Red filled (blue open) symbols: ELOs in EA-Z0 (EB -Z0) sample. Error
bars account for projection effects. Green filled triangles are the values corresponding
to the SAURON sample of ellipticals. Right: the gradients of the Mdark

cyl (R)/M star
cyl (R)

profiles as a function of their stellar masses; green triangles with error bars are the
empirical mass-to-light gradients as determined by Napolitano et al. (2005) for galaxies
with the a4 × 100 shape parameter lower than 0.1 (that is, for boxy ellipticals).

Figure 5.13: Baryon fraction profiles for ELOs in EA-Z0 sample (red full lines) and
EB -Z0 sample (blue dashed lines), in the same range of virial mass, 1.5 × 1012M� ≤
Mvir < 5× 1012M�.
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Figure 5.14: The Mhg(< r)/M cb
bo profiles for typical ELOs. Mhg(< r) is the mass of

hot gas within a sphere of radius r. Orange point lines: ELOs with 1.5× 1012 ≤Mvir <
5× 1012M�; green dashed lines: ELOs with Mvir < 1.5× 1012M�. Only isolated ELOs
have been considered.
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5.2.5 Total Three-Dimensional Mass Density Profiles

We now address the issue of the total mass (i.e., baryonic plus dark) density profiles.

In Figure 5.15 they are drawn for ELOs in the EA-Z0 sample (upper panel) as well as

for those in the EB -Z0 sample (lower panel). In both cases, the profiles corresponding

to ELOs in different mass intervals have been drawn with different line and color codes.

Some important results are that i), they are well fit by power-law expressions ρtot(r) ∝
r−γ in a range of r/rvir values larger than two decades, ii), the slope of the power-

law increases with decreasing ELO mass, and, iii) a slight SF effects appears, but only

at the very inner regions, with EB -Z0 sample ELOs showing a worse fit to a power

law than their EA-Z0 counterparts. Koopmans et al. (2006) have also found that the

total mass density profiles of their massive (< σap >= 263 km s−1) lens EGs can be

fit by power-law expressions within their Einstein radii (< REinst >= 4.2 ± 0.4 kpc,

with < REinst/R
light
e >= 0.52 ± 0.04, i.e., the inner region), whose average slope is

< γ >= 2.01+0.02
−0.03 ± 0.05 (68 percent C.L.), with an intrinsic scatter of 0.12. These

results, i.e., that all the components combine to make almost an isothermal profile,

have been confirmed for early-type galaxies up to r ≤ 100 kpc by Gavazzi et al. (2007).

To elucidate how well the total mass density profiles of ELOs compare with these results,

in Figure 5.16 we plot the slopes γ for ELOs, as well as for SLACS lens ellipticals (Table

1, Koopmans et al., 2006), versus their central L.O.S. stellar velocity dispersions. The

fitting range for ELOs used to draw this Figure is r < rstar
90,bo. Same trends are obtained

using rstar
e,bo or rvir but for slightly higher or lower values of γ respectively. We see that

results for ELO and SLACS lens galaxy samples are consistent in the range of velocity

dispersion values where they coincide.



100 Chapter 5. Ellipticals at z = 0: Profiles

Figure 5.15: The total mass density profiles for ELOs in the EA-Z0 sample (up) and
in the EB -Z0 sample (down). Green dashed lines: ELOs with Mvir < 1.5 × 1012M�;
orange point-dashed lines: ELOs with 1.5 × 1012M� ≤ Mvir < 5 × 1012 M�; blue full
lines: ELOs with 5 × 1012M� ≤ Mvir. The violet long-dashed lines are the one sigma
interval for the slope resulting from fits to power-law profiles of lens ellipticals from
Koopmans et al. (2006).

Figure 5.16: The logarithmic slopes corresponding to the total mass density profiles
for ELOs in the EA-Z0 (red filled circles) and the EB -Z0 samples (blue open circles),
versus their central L.O.S. stellar velocity dispersions. Green triangles with error bars
correspond to data on SLACS lens ellipticals, as given in Table 1 of Koopmans et al.
(2006).
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5.2.6 Projected Stellar Mass Density Profiles

There has been a recent consensus on the applicability to virtually all elliptical galaxies

of the Sérsic law to characterize their photometric properties (see Section 3.2). We have

built a fitting method trying to mimic as much as possible the observational techniques

(see Section 4.5) and we want to check if Σstar(R) can be fitted by a Sérsic-like law

comparing our results with observational data. This is in fact the case as shown in

Figure 5.17 for several typical ELOs drawn from both EA-Z0 and EB -Z0 samples (see

Kawata & Gibson, 2005, for a similar result concerning one virtual elliptical galaxy).

We would deepen into the different relations between all these fundamental parameters

in the next Chapter 6.3.

Figure 5.17: Projected stellar mass density profiles for different ELOs (black full line)
along with their best fit by a Sérsic law (red long dashed). The corresponding shape
parameter best values and minimal χ2 per-degree-of freedom are also shown. The
short dashed line stands for the geometric mean γstar

B = 6.3 used to calculate the outer
boundary R27. Dotted lines stand for the lower and higher limits of γstar

B .

As a test to check the consistency of the fits, we have compared the projected effective

radii, Rstar
e,bo, and the stellar mass, M star

cyl,bo, obtained from the different fits versus the ones

obtained directly from the profiles and find very similar results. We also checked that

fixing the mass by boundary conditions and leaving just two free parameters (n and

Rstar
e,bo) gave us very similar results and trends. On the other side, using a de Vaucouleurs

(1948) analytical profile (fixing n = 4) produced much poorer fits. In addition, we have

checked the robustness of our method testing how all the different input variables that

are used affect to the final fit. These tests have confirmed all our results and that all

the different trends we found do not disappear. However, in order to compare with

observational data we found that the outer and inner boundaries Rmax and Rmin are

the most important parameters for the fit. As Rmax increases, the shape parameter n
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also shows a softly increase. However as long as the object is well defined up to the Rmax

(no satellites, bumps, etc.) increasing this radius in a ∼ 150% produces just a ∼ 4%

increase in the different parameters of the fit. Moreover, concerning the comparison

with observations, we can see in Figure 5.17 that the particular γstar
B value used within

its range of best values (dotted lines in Figure 5.17) produce very similar R27 results.

Therefore these three different fits produce very similar results with a lower dispersion

than the one produced just from projection effects.

5.3 Kinematic Profiles

Shapes and mass density profiles (i.e., positions) are related to the 3D velocity dis-

tributions of relaxed E galaxies through the Jeans equation (see Binney & Tremaine,

1987). Observationally, the information on such 3D distributions is not available for

external galaxies, only the line-of-sight velocity distributions (LOSVD) can be inferred

from their spectra. They have been found to be close to gaussian (Binney & Tremaine,

1987; van der Marel & Franx, 1993), so that simple equilibrium models can be expected

to adequately describe their dynamical state (de Zeeuw & Franx, 1991). The complete

six dimensional phase space information for each of the particles sampling the ELOs

provided by numerical simulations, allow us to calculate the velocity profiles, Vcir(r),

the 3D profiles for the velocity dispersion, σ3D(r), and their corresponding anisotropy

profiles. These profiles, as well as the LOS velocity Vlos(R) and LOS velocity dispersion

σlos(R) profiles, are analyzed in detail in this section. All the main algorithms used to

compute each of these quantities are described in Section 4.5

5.3.1 Three-Dimensional Velocity Distributions

The complete six dimensional phase space information for each of the particles sampling

the ELOs provided by numerical simulations, allow us to calculate the 3D profiles for the

velocity dispersion, σ3D(r), as well as the circular velocity profiles, Vcir(r). In Figure 5.18

we draw the Vcir(r) profiles (full line), as well as their dark matter (short-dashed line)

and baryonic contributions (stars, long-dashed line; stars plus cold gas, point line).

The Vcir(r) profiles provide another measure of ELO mass distribution. We note

in Figure 5.18 that the baryon mass distribution is more concentrated than the dark

matter one due to energy losses by the gaseous component before being transformed into

stars. This is a general property of the circular velocity profiles of the ELO samples.

Moreover, objects in EB -Z0 sample are more concentrated than their EA-Z0 sample

counterparts, because of the SF implementation: the amount of baryons at their central

volumes relative to dark matter is always lower in EA-Z0 than in EB -Z0 objects; this

is a small scale effect as r ∼ 30 kpc or r ∼ 40 kpc radii enclose roughly similar amounts

of baryons or dark matter in any cases.
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Figure 5.18: The circular velocities profiles of two typical ELOs in the EA-Z0 sample
(upper panels) and their EB -Z0 sample counterparts (lower panels). Black full line:
total mass; blue short-dashed line: dark matter contribution; green long-dashed line:
stellar mass contribution; red point line: cold baryon contribution.

In Figure 5.19 we draw, for the same ELOs, the σ3D(r) profiles as measured by

stars, (σstar
3D (r), starred symbols and short-dashed lines), and by dark matter, (σdark

3D (r),

open circles and long-dashed lines) as proof particles in the overall potential well. These

profiles are in any case decreasing outwards, both for the dark matter and for the stellar

components. An outstanding result illustrated by Figure 5.19 is that σdark
3D (r) is always

higher than σstar
3D (r) (because stars are made out of cooled gas), with σstar

3D (r)/σdark
3D (r) ∼

0.8, in consistency with the values found by Loewenstein (2000) on theoretical grounds

and by Dekel et al. (2005) from pre-prepared simulations of mergers of disc galaxies.

This is the so-called kinematical segregation (Sáiz et al., 2003, 2004).

This is so because stars are formed from gas that had lost energy by cooling. This

result on kinematical segregation is very interesting because it has the implication that
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the use of stellar kinematics to measure the total mass of ellipticals could result into

inaccurate values

To further analyze this issue, in Figure 5.20 we plot the σstar
3D (r)/σdark

3D (r) ratios for

the ELOS in both the EA-Z0 sample and in the EB -Z0 sample, with different color and

line codes depending on the ELO mass range. We see that the kinematical segregation

does not show either a clear mass dependence, or a radial dependence. Moreover, the

SF parameterization effect is only mild.

Figure 5.19: The σ3D(r) profiles of two typical ELOs in the EA-Z0 sample (upper panels)
and their EB -Z0 sample counterparts (lower panels). Also shown are the anisotropy
profiles βani(r). Blue long-dashed lines: dark matter; red short-dashed lines: stars.

The anisotropy profile, βani(r), is also represented in Figure 5.19 for typical ELOs

in the sample, for their dark matter and stellar particle components. The anisotropy is

always positive (i.e., an excess of dispersion in radial motions), the profiles are almost

constant, except at the innermost regions, and the stellar component is always more

anisotropic than the dark matter one, presumably as a consequence of the mergers
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involved in the ELO mass assembly (see Section 9.2). In fact, the characteristics of

the stellar anisotropy profiles (roughly constant and βstar
ani (r) ' 0.5 in most cases) are

consistent with those found by Dekel et al. (2005), where they conclude that large radial

anisotropy is generic to the stellar component of merger remnants of any kind.

Figure 5.20: The σstar
3D (r)/σdark

3D (r) ratio profiles for ELOs in EA-Z0 (upper panel) and
EB -Z0 (lower panel) samples. Different color and line codes stand for ELO mass inter-
vals, as in Figure 9.

5.3.2 Stellar LOS Velocity and Velocity Dispersion Profiles

Figure 5.19 provide an illustration of the general characteristics of the lower-order mo-

ments of the 3D velocity distribution. The profiles plot in these Figures are not ob-

servationally available, but only the lower-order moments of the LOSVD are. We have

measured the stellar line-of-sight velocity and the stellar velocity dispersion profiles,

V star
los (R) and σstar

los (R), along one hundred random projections for all ELOs (see details

in 4.5). Studying these stellar line-of-sight velocity profiles we have found that in some

cases ELOs do indeed show a clear rotation curve, while in most cases the rotation is

only modest or even very low, as illustrated in Figure 5.21.

We now comment on the major axis LOS stellar velocity dispersion profiles of ELOs

(Figure 5.21). Their most outstanding feature is the decrease of the σstar
los (R) profiles in

some cases and particularly so along some LOS directions at large R. These profiles are

suited to compare with stellar kinematics data. In other cases, for example to compare

with planetary nebulae data, the LOS velocity dispersion profiles must be calculated by

averaging over the LOS velocities of stars placed within cylindrical shells, with their axes

in the LOS direction. Figure 5.22 is a plot of such profiles normalized to σstar
los (Rstar

e,bo) for

the EA-Z0 sample ELOs; each panel corresponds to a different orthogonal projection.

To make clearer the decline of the σstar
los (R) profiles, in Figure 5.23 we plot, at different
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Figure 5.21: Left panel: Full line: the major axis stellar LOS velocity profile along
the spin direction for an ELO in EA-Z0 sample. Point and dashed lines: same as the
continuous line taking the LOS direction normal to the ELO spin vector. This particular
ELO rotates. Right panel: Same as the left panel for another ELO. In this case, the
rotation is only mild.

R values, the averages of the stacked profiles shown in Figure 5.22 with their dispersions

(green points and error bars), as well as the averages of the profiles corresponding to

young stars (age ≤ 3 Gyears, orange squares and error bars), normalized for each ELO

to their corresponding σstar
los (Rstar

e,bo). The decline of these velocity dispersion profiles can

be clearly appreciated, as well as the slightly larger decline of the profiles corresponding

to the younger stellar populations. These results are consistent, within their dispersions,

with that shown by Dekel et al. (2005) in their figure 2 (lower panel). They are also

marginally consistent with the decline shown by PN data in the NGC 821, NGC 3379,

NGC 4494 and NGC 4697 galaxies (Romanowsky et al., 2003; Romanowsky, 2006).

Note, however, that our ELOs are boxy, while the a4 × 100/a shape parameters for

these galaxies are 2.5, 0.2, 0.3 and 1.4, respectively, that is, they are rather disky

ellipticals.

5.3.2.1 Some Details About the Rotation of ELOs

To quantify the amount of rotation in ELOs and its possible dependence on the mass

scale, in Figure 5.24 we plot the ratios crot = Vmin/(V
2

maj + V 2
min)1/2 as a function of

the ELO virial masses, for ELOs in both the EA-Z0 and the EB -Z0 samples (Vmaj and

Vmin are the maximum values of the V star
los (R) profile when measured along the major

and the minor axes, respectively). When the ELO shows a clear rotation curve, Vmin

is much lower than Vmaj, and the crot ratio is low; by contrast, when the rotation is

unimportant, then Vmin ' Vmaj and crot ∼ 0.7. For a given ELO, the crot value depends
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on the direction taken as LOS direction, in such a way that it is maximum when the

ELO spin is taken as LOS direction, and minimum when the LOS direction is normal

to the ELO spin vector, that is, when rotation stands out. This is the LOS direction

taken to draw this Figure, where we see that there is not a clear mass dependence, that

most ELOs are in between the two situations described above and that the values of the

crot ratio of ELOs are typical of boxy ellipticals (see, for example, Binney & Tremaine,

1987, figure 4.39). A detailed study of the rotation of different sample ELOs at z = 0

and its relation with shape can be found in Chapter 7.
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Figure 5.22: LOS velocity dispersion velocity profiles along three different orthogonal
projections for ELOs in EA-Z0 sample up to 6 effective radii. The profiles are normalized
to their value at Rstar

e,bo for each ELO. Green full lines: ELOs with Mvir < 1.5× 1012M�;

orange point-dashed lines: ELOs with 1.5×1012M� ≤Mvir < 5×1012 M�; blue dashed
lines: ELOs with 5× 1012M� ≤Mvir.
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Figure 5.23: The EA-Z0 sample average LOS velocity dispersion profiles normalized
to their values at Rstar

e,bo for each ELO (green points) along with their 1 σ dispersions.
Orange points and error bars: the same for the young stellar particles, with the same
normalization.

Figure 5.24: The crot ratios as a function of the virial mass for ELOs in the samples
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5.4 Conclusions

In this Chapter we have presented an analysis of a set of samples of ELOs at z =

0, formed in different cosmological simulations. The information about position and

velocity distributions of the ELO particles of different kinds (dark matter, stars, cold

gas, hot gas) provided by the simulations, allows a detailed study of their intrinsic three

dimensional mass and velocity distributions. We have reported on the three dimensional

mass density, circular velocity and velocity dispersion profiles, as well as the projected

stellar mass density profiles and the LOS velocity dispersion profiles.

The first step in the program of studying the origins of elliptical galaxies through

self-consistent simulations, is to make sure that they produce ELO samples that have

counterparts in the real local Universe. To answer to this question, we have compared

along this chapter our virtual results with new observational data, obtaining a very

satisfactory agreement. To be specific:

• The projected stellar mass profile, Σstar(R), can be adequately fitted by a Sérsic-

like law.

• The fraction of dark-to-total mass inside the projected half-mass radii are con-

sistent with the observational ones obtained by Cappellari et al. (2006) from

SAURON data.

• The gradients of the dark-to-stellarMdark(< r)/M star(< r) profiles as a function of

their stellar masses, are consistent with those observationally found by Napolitano

et al. (2005) for boxy ellipticals.

• The total mass (i.e., baryonic plus dark) density profiles can be well fit by a power-

law expression in a large range of r/rvir values, with power-law slopes that are

consistent with, within the dispersion, or slightly higher than those observationally

found by Koopmans et al. (2006) for massive lens ellipticals within their Einstein

radii.

• The line-of-sight velocity profiles along the major axis show, in some cases, a clear

rotation, even if in most cases the rotation is modest or low. The values of the

rotation ratio along the major and minor axis (a measure of the rotation in ELOs)

does not depend on the mass scale

• The values spanned by the rotation ratios of ELOs are typical of boxy ellipticals.

• The line-of-sight velocity dispersion profiles, σlos(R), decline outwards at large

R, and the slope slightly increases when only the younger stellar populations are

considered. These profiles are only marginally consistent with data on PNs at

large radii; but these correspond to disky ellipticals while our virtual ellipticals

are rather boxy.
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These agreements with observational data strongly suggest that the intrinsic three-

dimensional dark and bright matter mass and velocity distributions we get in our sim-

ulations might also adequately describe real ellipticals. We now summarize our most

important findings on the study of the mass and velocity profiles of ELOs:

• ELOs are embedded in extended massive dark matter halos.

• The best fits of their spherically-averaged dark matter density profiles to usual

analytical formulas (Hern90, NFW, TD, JS, Eina) are generally provided by the

two last formulas. The quality of the fits is good, so that ELO halos form a two-

parameter family where the two parameters are correlated. This is consistent with

those produced in purely N-body simulations. The JS inner slope parameter, α,

is always higher than the NFW value (α =1).

• The slope parameters grow as the ELO mass scale decreases, indicating that the

halo concentration grows when the mass decreases.

• Halos have suffered from adiabatic contraction. This can be made quantitative

by comparing the plot of the density at the Einasto scale, ρ−2, versus the scale

r−2 = ah, with the plot provided by Navarro et al. (2004b, results of purely N-body

simulations).

• At the ELO scale, most baryons have turned into stars. The three dimensional

stellar-mass density profiles can be fit by Einasto or JS profiles, but with small

r−2 values.

• The mass distribution homology is broken in the stellar mass as well as in the dark-

versus bright-mass distributions, with the stellar mass distribution relative to dark

mass one less concentrated with increasing ELO mass. That is, massive ELOs miss

baryons at short scales as compared with less massive ones, when we normalize

to the dark matter content. This result is consistent with the observational ones

by Cappellari et al. (2006) from SAURON data, as well as by Napolitano et al.

(2005) we quoted above.

• At the halo scale, the baryon fraction profiles have been found to show a typical

pattern, where their values are high at the center, then they decrease and have a

minimum roughly at 0.3 < rab
min/rvir <0.7, well below the global value, Ωb/Ωm =

0.171, then they increase again, reach a maximum value and then they decrease

and fall to the global Ωb/Ωm value well beyond the virial radii rvir. This suggests

that the baryons that massive ELOs miss at short scales (stars) are found at

the outskirts of the configuration as diffuse hot gas. This result could reflect the

presence of a stable virial shock that prevents gas infall more efficiently as mass

increases (Dekel & Birnboim, 2006).
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• Concerning kinematics, stellar and dark matter particles constitute a dynamically

hot component with an important velocity dispersion. In addition, ELO velocity

dispersion profiles in three dimensions are slightly decreasing for increasing r, both

for dark matter and stellar particles, σdark
3D (r) and σstar

3D (r).

• The dark and bright matter components of ELOs are cinematically segregated, as

we have found that (σdark
3D (r))2 ∼ (1.4 – 2) (σstar

3D (r))2, confirming previous results

(Sáiz et al., 2003; Loewenstein, 2000; Dekel et al., 2005). This is so because stars

are formed from gas that had lost energy by cooling.

• This kinematical segregation does not show any clear mass or radial dependence.

• The anisotropy is always positive (i.e., an excess of radial motions) and almost non-

varying with r inside the ELOs. Recall, however, that ELOs have been identified as

dynamically relaxed objects: there are not recent mergers in the samples analyzed

in this Chapter.

• The stellar component generally shows more anisotropy than the dark component,

maybe derived from the radial motion of the gas particles that gave rise to the

stars.

As we can see some of conclusions pointed above are really interesting and require

further investigation. To this end, once we have analyzed the different structural and

kinematical profiles of our ELOs, our next logical step has been to study the funda-

mental parameters that characterize them, their correlations and to try to make further

comparisons with observations. In this Chapter we have already analyzed some of them,

but in the next one we have delved deeper into this issue and tried to confirm some of

the results pointed here.

Therefore, our final conclusions concerning the structure and kinematics of our simu-

lated elliptical galaxies and detailed discussion on the robustness of the results presented

here for a different cosmological model, resolution, box size, etc. can be found at the

end of the next Chapter (Section 6.6).



Chapter 6

Ellipticals at z = 0: Fundamental

Parameters1

6.1 Introduction

In the previous chapter we have studied the structural and kinematical profiles of our

virtual ellipticals. We have analyzed these profiles and have given a qualitative de-

scription of their properties. In this Chapter we will use the different fundamental

parameters that characterize the structural and kinematical properties of the simulated

ellipticals at different scales, to give a more quantitative description of them, compare

with real observations and to deepen into the origin of their observable relations.

This study has been done for all the different simulations discussed in 4.2. However

for the sake of clarity, in this chapter, as well as in the previous one, we would first

center our analysis on the EA-Z0 and EB -Z0 elliptical-like object (ELO) main samples.

We discuss deeply the robustness of results and possible caveats between all the samples

at the end of this chapter.

First, Section 6.2 is focused on the Fundamental Plane relation. Thereafter, in

section 6.3 we examine the Photometric plane relation and their connection with the

previous one. Section 6.4 describes the stellar age properties of our simulated ellipticals

and their relation with the different structural and kinematical fundamental parame-

ters. Section 6.5 includes different tests concerning the robustness of our main results.

Summary and final conclusions can be found in the last Section (6.6).

1Based on Oñorbe, Domı́nguez-Tenreiro, Sáiz, Serna, & Artal (2005); Oñorbe, Domı́nguez-Tenreiro,
Sáiz, Artal, & Serna (2006); Oñorbe, Domı́nguez-Tenreiro, & Sáiz (2006); González-Garćıa, Oñorbe,
Domı́nguez-Tenreiro, & Gómez-Flechoso (2009)
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6.2 Fundamental Parameters: The Fundamental Plane

In this Section we introduce most of the structural and kinematical fundamental pa-

rameters of our ELOs, and we deepen into the tightest observed relation among these

parameters for elliptical galaxies: the Fundamental Plane (see Section 3.2 for a theo-

retical introduction to this issue).To help the reader, we remind that in Table 4.4 and

Table 4.5 a list of the parameter names and symbols used in this thesis can be found.

6.2.1 Fundamental Parameters: Halo Scale

We have already seen in Section 4.4 that from a definition of a characteristic overdensity,

we can obtain a characteristic radius, named the virial radius, rvir, which define the halo

scale for each ELO. From this radius we can build characteristic masses, as the virial

mass, Mvir, for the total mass. We can also describe more mass scales associated to the

different constituents considered here: dark matter, Mdark
h , baryons of any kind, Mdark

h ,

cold baryons (that is, cold gas particles with T < 3× 104 K and stellar particles), M cb
h ,

stars, M star
h , and hot gas (that is, gaseous particles with T > 3× 104 K), Mhg

h . Also, a

measure of the compactness of the mass distribution for the different ELO constituents,

at the halo scale, is given by their respective half-mass radii, or radii enclosing half the

mass of these constituents within rvir; for example, the overall half-mass radii, rtot
e,h, are

the radii of the sphere enclosing Mvir/2, the stellar half-mass radii rstar
e,h enclose M star

h /2

and so on. Concerning kinematics, the most significant velocity dispersion parameter

for ELOs at the halo scale is σtot
3,h, the average 3-dimensional velocity dispersion of the

whole elliptical up to the virial radius, including both dark and baryonic matter.

In Figure 6.1 we plot the different correlations between the structural and kinemat-

ical fundamental parameters at the halo scale: Mvir, r
tot
e,h and σtot

3,h. As expected from

the virial theorem all of them show a very good correlation. We can see also that at

the halo scale EA and EB samples do not present significant differences, indicating that

at this scale the star formation algorithm is not really important. Note that the virial

masses of ELOs have a lower limit of 3.7 × 1011 M�.

We now comment on length scales. As we have seen in Figure 6.1 the overall half-

mass radius rtot
e,h are closely correlated to Mvir. Concerning baryonic mass distributions,

dissipation in shocks and gas cooling play now important roles to determine them. And

so, the rstar
e,h radii depend on how much energy was radiated before gaseous particles

became dense enough to be turned into stars. This, in turn, depends on the mass scale,

on the one hand, and, in a given mass range, on the values of SF parameters, on the

other hand. And so, more massive ELOs tend to have larger rstar
e,h radii and, in a given

mass range, EA-Z0 sample ELOs tend to have larger rstar
e,h radii than their EB -Z0 sample

counterparts, because the SF implementation in the code demands denser gas to form

stars in the later than in the former. This effect is more remarkable for sizes at the scale
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Figure 6.1: The different correlations between the structural and kinematical funda-
mental parameters at the halo scale: the virial mass, Mvir, the overall half-mass radius,
rtot

e,h and the total velocity dispersion, σtot
3,h. Filled red symbols: EA-Z0 sample ELOs;

open blue symbols: EB -Z0 sample ELOs.

of the baryonic object, as we shall see in the next subsection.

Concerning the different mass scales, all of them are strongly correlated with Mvir

as shown in Figure 6.2(a) for M star
h .

An important point is the amount of gas infall relative to the halo mass scale. As

illustrated in Figure 6.2(b) for M cb
h /Mvir, any of the ratios Mab

h /Mvir, M
cb
h /Mvir or

M star
h /Mvir decreases as Mvir increases, as observationally found at smaller scales (see

Chapter 3). Note that we have in any case Mbar
h /Mvir < Ωb/Ωm = 0.171, the average

cosmic fraction, so that there is a lack of baryons within rvir relative to the dark mass

content that becomes more important as Mvir increases. Otherwise, heating processes

along ELO assembly give rise to a hot gas halo around the objects, partially beyond the

virial radii. The amount of hot gas mass outside the virial radii, normalized to the ELO
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(a) (b)

Figure 6.2: a) Masses at the halo scale of stars versus their corresponding virial masses.
b) Masses of cold baryons inside the virial radii in units of the corresponding virial
mass for the ELO sample. Filled red symbols: EA-Z0 sample ELOs; open blue symbols:
EB -Z0 sample ELOs.

stellar mass, M star
bo (see Section 6.2.2), increases with the mass scale. It also increases

relative to the cold gas content at the halo scale.

We now turn again to the relation among the three main parameters that described

the halo scale: the virial mass, Mvir, the overall half-mass radius, rtot
e,h and the total

velocity dispersion, σtot
3,h. In Section 3.2 we have introduced the virial theorem (Eq.

3.4), that relates the characteristic mass, total velocity dispersion and a characteristic

gravitational radius. We have chosen rtot
e,h as this characteristic gravitational radius.

To test that this is in fact the case, in Figure 6.3 we plot the cf ≡ GMvir/(σ
tot
3,h)2rtot

e,h

form factors as a function of M star
bo . The lack of any significant mass or SF parameter-

ization effects in this Figure are quantitatively confirmed through a fit to power laws

of the form cf = Af(M
star
bo )βf , whose results in Table 6.3 are consistent with cf being

independent of the ELO mass scale or SF parameter values. Note also that the cf val-

ues are as expected (Binney & Tremaine, 1987) confirming the selection of rtot
e,h as the

characteristic gravitational radius and that these three parameters define a plane: The

Virial Plane.

6.2.2 Fundamental Parameters: Baryonic Object Scale

Let us now turn to the study of ELOs at the scale of the baryonic objects themselves,

that is, at scales of some tens of kpcs (see Section 4.4). Physically, the mass parameter

at the ELO scale is M cb
bo , the total amount of cold baryons that have reached the central
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Figure 6.3: The cf ≡ GMvir/(σ
tot
3,h)2rtot

e,h form factors (see Equation 3.4) versus the ELO

mass scale. Symbols are as in previous Figures. This Figure confirms that rtot
e,h and σtot

3,h

are the size and velocity dispersion ELO parameters that must be used in the virial
theorem.

volume of the halos, forming an ELO. Most of these cold baryons have turned into

stars, depending on the strength of the dynamical activity in the volume surrounding the

proto-ELO at high z, and, also, on the values of the SF parameters. Therefore the stellar

mass, M star
bo , can be used as a good characteristic mass scale for the baryonic object and

have the great advantage of being a parameter largely obtained from luminosity data

trough modeling (see, for example, Kauffmann et al., 2003b). Effective or half-mass

radii at the baryonic object scale, rcb
e,bo and rstar

e,bo, can be defined as those radii enclosing

half the M cb
bo or M star

bo masses, respectively.

To illustrate how the halo total mass, Mvir, determines the ELO structure at kpc

scales, in Figures 6.4(a) and 6.4(b) we draw M star
bo and rstar

e,bo versus Mvir, respectively, for

the ELO sample. A good correlation is apparent in Figure 6.4(a), where it is shown that

ELO stellar masses are mainly determined by the halo mass scale, Mvir, with only a very

slight dependence on the SF parameterization (EA-Z0 type ELOs have a slightly higher

stellar content than their EB -Z0 counterparts, as expected). Figure 6.4(b) shows also

a good correlation between the length scales for the stellar masses and Mvir, but now

the sizes depend also on the SF parameters. The physical foundations of this behavior

are the same as discussed in the previous section. Note that ELOs have a lower limit in

their stellar mass content of 3.8 × 1010 M� (see Kauffmann et al., 2003a, for a similar

result in SDSS early-type galaxies). Exactly the same trends with the virial mass are

found for the cold baryon fundamental parametersM cb
bo and rcb

bo.

We now address the correlations of normalized mass and size scales. The increasing

behavior of the Mvir/M
cb
bo and Mvir/M

star
bo ratios with increasing mass scale are very
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(a) (b)

Figure 6.4: a) Stellar masses at the baryonic object scale versus halo mass for the ELO
sample. b) The 3D half-mass radii for stellar masses at the baryonic object scale versus
halo mass for the ELO sample. Symbols are as in previous Figures.

interesting. In particular, the last ratio (Figure 6.5) follows the same trends as the

empirical M∗/L versus L relation, see Bernardi et al. (2003b). The results of a fit to a

power law of the form Mvir/M
star
bo = Avir(M

star
bo )βvir are given in Table 6.3, where we see

that they do not depend on the SF parameterization. We would discuss more on this

issue downwards.

To have an idea on how important cold baryon infall has been at the baryonic object

scale relative to that at the halo scale, in Figure 6.6 the M cb
h /M cb

bo ratios are drawn as

a function of the ELO mass scale. We see that in any case more than half the mass of

cold baryons inside the virial radii are concentrated in the central baryonic object, and

that there is a mass effect in the sense that this fraction grows with decreasing ELO

mass scale, and no appreciable SF effect.

Concerning kinematics, physically, a measure of the average dynamical state of stars

in the ELO itself is provided by their mean square velocity relative to the ELO cen-

ter of mass, or average three-dimensional velocity dispersion σstar
3,bo. All the significant

parameters at the baryonic object scale are listed in Table 4.4.

In the last section it has been shown that the structural and kinematical parameters

at the halo scale satisfy the virial relation. In the last section it has been shown that the

mass, size and velocity dispersion parameters at the halo scale satisfy virial relations.

This result is, however, at odds with the tilt of the observed FP of ellipticals discussed

in 3.2, that involves the L, Rlight
e and σ0 observed variables, whose virtual counterparts

describe the ELO at the scale of the baryonic object. So, we have first to analyze

whether or not the mass, size and velocity dispersion of ELOs at this scale define planes
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Figure 6.5: The Mvir/M
star
bo ratios as a function of the ELO mass scale. Symbols are as

in previous Figures.

tilted relative to the virial one.

To this end, we have carried out a principal component analysis (PCA) of the EA-Z0

and EB -Z0 samples in the three dimensional variables E ≡ log10M
star
bo , r ≡ log10 r

star
e,bo

and v ≡ log10 σ
star
3,bo through their 3×3 correlation matrix C. PCA is a technique that can

be used to simplify a dataset; more formally it is a linear transformation that chooses a

new coordinate system for the data set such that the greatest variance by any projection

of the data set comes to lie on the first axis (then called the first principal component),

the second greatest variance on the second axis, and so on. Therefore, by finding the

eigenvalues and eigenvectors of the covariance matrix, we find that the eigenvectors with

the largest eigenvalues correspond to the dimensions that have the strongest correlation

in the dataset (Saglia et al., 2001). By this, in a three-dimension space as we are using,

if one eigenvalue is much lower than the other two we say that our data populates a

plane. The square root of this lowest eigenvalue is the scatter of the plane.

We have found that, irrespective of the SF parameterization, one of the eigenvalues

of C is considerably smaller than the others (see Table 6.1), so that ELOs populate in

any case a flattened ellipsoid close to a two-dimensional plane in the (E, r, v) space that

we call the intrinsic dynamical plane (IDP); the FP is the observed manifestation of

this IDP. The eigenvectors of C indicate that the projection

E − Ẽ = α3D(r − r̃) + γ3D(v − ṽ), (6.1)

where Ẽ, r̃ and ṽ are the mean values of the E, r and v variables, shows the IDP viewed

edge-on. Table 6.1 gives the eigenvalues of the correlation matrix C (λ1, λ2, λ3), the

planes Eq. (6.1), as well as their corresponding thicknesses σErv , both for the EA-Z0 and
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Figure 6.6: The M cb
h /M cb

bo ratios as a function of the ELO mass scale. Symbols are as
in previous Figures.

Sample No. Ẽ r̃ ṽ λ1 λ2 λ3 α3D γ3D σErv

EA-Z0 26 10.987 0.735 2.312 0.12930 0.00462 0.00020 0.459 1.928 0.014
EB-Z0 17 11.245 0.667 2.420 0.14509 0.00968 0.00014 0.392 1.776 0.012
EA-STAR-Z0 56 10.854 0.598 2.279 0.16664 0.00699 0.00077 0.586 1.529 0.028

Table 6.1: Results of PCA at z = 0. Column 2: ELO number in the sample. Columns
3, 4 and 5: sample mean values of the E, r and v variables. Columns 6, 7 and 8:
eigenvalues of the correlation matrix. Columns 9 and 10: coefficients of the plane (Eq.
6.1). Column 11: IDP scatter in the E, r and v variables.

EB -Z0 samples. The IDPs are in fact tilted relative to the virial plane (characterized

by α = 1, γ = 2), and their scatter is very low as measured by their thicknesses σErv .

Note that the values of the eigenvalues of the PCA analysis are not dependent on the SF

parameterization. In Table 6.1 we also present the IDP for the EA-STAR-Z0 sample.

This sample includes ELOs that are not isolated up to the halo scale, therefore is a larger

sample and more representative of a real one (see Section 4.4.1). We have confirmed

that these ELOs also populate the IDP although slightly increasing the scatter of the

plane.

In Figure 6.7 we plot the (E, v), (E, r) and (r, v) projections of the IDPs corre-

sponding both to the EA-Z0 sample and the EB -Z0 sample. We see that the three plots

show correlations and that these are very tight for the first of them. It is important to

note that this correlation between σstar
3,bo and M star

bo has the same zero-point both for the

EA-Z0 sample and the EB -Z0 sample. Moreover, in these plots we clearly see again that

the main difference between the EA and EB ELO samples are in their characteristic

radii due to their differences in the star formation parameters of the simulations (see

the discussion above).
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Figure 6.7: The IDPs for the EA-Z0 and EB -Z0 samples. Projections on the (E, v),
(E, r) and (r, v) coordinate planes are shown.

6.2.3 Fundamental Parameters: Projected Baryonic Object Scale

In the previous section we have studied the fundamental parameters of the intrinsic

baryonic object and discovered that they define a flattened ellipsoid close to a plane

(the intrinsic dynamical plane, IDP). This plane is tilted relative to the virial one, and

its observational projected counterparts (the luminosity L, effective projected size Rlight
e ,

and the stellar central l.o.s. velocity dispersion, σ0) enter the definition of the observed

FP (see Section 3.2.2). Therefore the next step is to check how the IDP is related with

the observed Fundamental Plane.

To make this analysis as clear as possible, Bender et al. (1992) introduced an or-

thogonal coordinate system, κi system, i=1,2,3 in order to improve the study of the

Fundamental Plane. The κ coordinate system was obtained by a simple orthogonal

coordinate transformation (i.e. rotation), applied to the observed parameters. The par-



122 Chapter 6. Ellipticals at z = 0: Fundamental Parameters

ticular choice of orthogonal coordinate transformation was made so that κ1 is a simple

measure of galaxy mass, κ3 is proportional to the mass-to-light ratio, the projection

κ1 − κ2 correspond to a face-on view of the Fundamental Plane and the projection

κ3 − κ1 shows the Fundamental Plane edge-on:

κ1 ≡ (2 log(σ0) + logRlight
e )/

√
2 (6.2)

κ2 ≡ (2 log σ0 + 2 log < I light >e −logRlight
e )/

√
6 (6.3)

κ3 ≡ (2 log σ0 − log < I light >e − logRlight
e )/

√
3 (6.4)

Assuming that the projected stellar mass density profile, Σstar(R), can be taken

as a measure of the surface brightness profile, then < Σstar >e= c < I light >e, with

c a constant, and Rstar
e,bo ' Rlight

e and we can look for a fundamental plane (hereafter,

the dynamical FP) in the 3-space of the structural and dynamical parameters Rstar
e,bo,

< Σstar >e and σstar
los,0, directly provided by the hydrodynamical simulations. Therefore,

the dynamical κD
i variables, free of age, metallicity or IMF effects, can be written as

(Sáiz et al., 2003):

κD
1 ≡ (2 log

(
σstar

los,0

)
+ logRstar

e,bo/
√

2 (6.5)

κD
2 ≡ (2 log

(
σstar

los,0

)
+ 2 log〈

star∑
〉e − logRstar

e,bo)/
√

6 (6.6)

κD
3 ≡ (2 log

(
σstar

los,0

)
− log〈

star∑
〉e − logRstar

e,bo)/
√

3 (6.7)

and they are related to the original κ coordinates through the expressions:

κ1 = κD
1 (6.8)

κ2 = κD
2 −
√

6

3
log(

M star
bo

L
) (6.9)

κ3 = κD
3 +

√
3

3
log(

M star
bo

L
) (6.10)

In Section 3.2 we have discussed how to obtain the observational fundamental pa-

rameters from the projected structural and kinematical profiles. We just recall that we

have computed the characteristic mass, M star
cyl,bo, radius, Rstar

e,bo, and velocity dispersion,

σstar
los,0, for each ELO in one-hundred random projections. The κD

i coordinates are also
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computed in this form. Unless stated, we use the mean value over all these projections

and its dispersion. We remind the reader that all the values for the different fundamental

parameters of the ELO samples can be found in Appendix D.

In order to compare our results with observational data, we decided to use the

SDSS catalog (York et al., 2000). We utilized a sample of 9000 early-type objects from

SDSS studied by Bernardi et al. (2003a,b,c,d). A maximum likelihood estimation of the

correlations among observables (Luminosity, effective radius, surface brightness, color

and velocity dispersion) is made by these authors. We have also, from Kauffmann

et al. (2003b), a median likelihood estimates of stellar burst fraction, dust attenuation

strengths stellar masses and stellar mass-to-light ratios for a complete sample of 80000

galaxies drawn from SDSS. The most interesting thing of this last job concerning our

work is that they obtain a constant stellar mass-to-light ratio for early-type galaxies

in the range of masses of our samples. The values of the logarithm of this ratio are

log γstar
r ' 0.53 and log γstar

z ' 0.25, with dispersions σS < 0.15 and 0.1, in the r and

z SDSS bands, respectively. The constant stellar-mass-to-light ratios allow us to write

the covariance matrix using the E ≡ logM star
bo variable instead of absolute magnitude

or the logarithm of the luminosity L.

We used the data of the z band to minimize stellar effects, since it is the redder

available in SDSS. Also we present in this work test analyses in the r band for which we

have obtained very close results. Defining E = logM star
bo we have that mass is related

with magnitudes as follows (Kauffmann et al., 2003b):

E = S∗ −
M∗ −Qz −M�

2.5
(6.11)

where S∗ = logML and Qz is a redshift correction. Q and S∗ is taken from Kauffmann

et al. (2003b). M� is the solar magnitude for the specific band, needed because S∗ is

normalized in solar units. We took it from Blanton et al. (2003). Once we get the median

mass for SDSS ellipticals in z and r band, we also derived the correspondent covariance

matrix for the new three parameter space for SDSS data: stellar mass, effective radius

and velocity dispersion. Means, dispersions and correlations are given in table 6.2,

where R = logRe, V = logσ0 and E is the logarithm of stellar mass calculated above.

The last step before comparing the ELO samples with the SDSS data is to take into

account that they have been calculated using a different Hubble constant. Radii and

masses of our virtual ellipticals are in h = 0.65 and early-types of SDSS are in h = 0.70.

We choose to move masses and distances of ELOs to h = 0.70 better than SDSS data

because mass-to-light ratios were also obtained with the assumption of h = 0.70.

Figure 6.8 plots the κD
3 versus κD

1 (top) and κD
2 versus κD

1 (bottom) diagrams for

ELOs in both the EA-Z0 and EB -Z0 samples. We also drew the 2σ concentration

ellipses in the respective variables, as well as its major and minor axes, for the SDSS

early-type galaxy sample in the SDSS z band (solid lines) and in the r band (point
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Band used Ē R̄ V̄ σE σR σV ρER ρEV ρV R

r 10.9 0.49 2.2 0.3509 0.241 0.111 0.8454 0.7419 0.543
z 10.81 0.45 2.2 0.3525 0.241 0.11 0.8486 0.7499 0.543

Table 6.2: Maximum likelihood estimates of the joint distribution of masses, sizes and
velocity dispersions for SDSS early-type sample (Bernardi et al., 2003a,b,c,d). Masses
are given in logM�, distances in log kpc, velocity dispersions in log km × s−1. The
Hubble constant used in the SDSS is h = 70.

lines) as analyzed by Bernardi et al. (2003b,c). The most outstanding feature of this

Figure (upper panel) is the good scaling behavior of κD
3 versus κD

1 , with a very low

scatter (see the slopes M1 in Table 6.3). Note that the slopes for the EA-Z0 and EB -

Z0 samples are consistent within their errors, while the zero-points depend on the SF

parameterization through the ELO sizes. The values of the slopes in Table 6.3 mean

that systematic variations of the structural and dynamical properties of ELOs with the

mass scale cause, by themselves, a tilt of the dynamical FP relative to the virial relation.

This confirms that the Fundamental Plane is the observed manifestation of the Intrinsic

Dynamical Plane introduced in previous Section. In Table 6.3 we also present the value

of this slope for the EA-STAR-Z0 sample showing that it is very similar as the EA-ZO

slope. EA-STAR-Z0 sample is a larger sample and more representative of a real one

because it includes ELOs that are not isolated up to the halo scale (see Section 4.4.1).

The EA-STAR-ZO sample in κ space can be seen in Figure 6.27. We would deepen into

the tilt and the scatter of the dynamical FP below (see 6.2.4 and 6.2.5 respectively).

Another interesting feature of Figure 6.8 is that it shows that most of the values of the

κD
i coefficients are within the 2σ concentration ellipses in both plots for ELOs formed in

EA-Z0 type simulations, with a slightly worse agreement for ELOs in the EB -Z0 sample.

This means that ELOs have counterparts in the real world (Sáiz et al., 2004). Finally, we

note that either the dynamical or the observed FPs are not homogeneously populated:

both SDSS ellipticals and ELOs occupy only a region within these planes (see Figure 6.8

lower panel, see also, Guzman et al., 1993; Márquez et al., 2000). This means that, from

the point of view of their structure and dynamics, ELOs are a two-parameter family

where the two parameters are not fully independent. Moreover, concerning ELOs, the

occupied region changes when the SF parameters change. The reason of this change

is that the ELO sizes decrease as SF becomes more difficult, because the amount of

dissipation experienced by the stellar component along ELO assembly increases (see

discussion in Section 9.2).

In figure 6.9 ELO samples and SDSS (z and r band) are shown in a mass, radius

and velocity dispersion coordinate system (Sáiz et al., 2004). These are more familiar

variables, and it is maybe better for a first comparison with SDSS data. Error bars

in ELOs variables account for the dispersion between the 100 projection values we are
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Figure 6.8: Dynamical Fundamental Plane in κD system. Edge-on projection (top
panel) and nearly face-on projection (bottom panel) of the dynamical FP of ELOs in
the κD variables (red filled symbols: EA-Z0 sample; blue open symbols: EB -Z0 sample).
We also draw the respective concentration ellipses (with their major and minor axes)
for the SDSS early-type galaxy sample from Bernardi et al. (2003b) in the z band (solid
line) and the r band (dashed line). Error bars account for projection effects. See text
for more details.

using (see Section 4.5.3). From these figures, we can see the advantages of using a

kappa space, in which from projections of two coordinates we can obtain much more

information. Finally in Figure 6.10 we show that the central l.o.s. velocity dispersion,

σstar
los,0, is a fair empirical estimator of the virial mass, Mvir. This is a very important

result because relates very strongly two quantities of very different scales and it does not

depend on the star formation parameters. The EA-STAR-ZO sample in mass, radius

and velocity dispersion space can be seen in Figure 6.28
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Figure 6.9: The Dynamical Plane: Rstar
e,bo,M star

bo and σstar
los,0 space. Symbols are as in

previous Figures. Error bars account for projection effects.
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Figure 6.10: The correlation between the central l.o.s. velocity dispersion and the virial
mass for the ELO samples. Symbols are as in previous Figures. Error bars account for
projection effects.



128 Chapter 6. Ellipticals at z = 0: Fundamental Parameters

6.2.4 The Origin of the Tilt of the Fundamental Plane

We now address the issue of the physical origin of the tilt of ELO IDPs relative to

the virial relation. As discussed in Section 3.2, a non-zero tilt can be caused by a

mass dependence of the mass-to-light ratio Mvir/L, of the mass structure coefficients

cvir
M ≡

GMvir

3(σstar
los,0)2Rstar

e,bo
, or of both of them. We examine briefly these possibilities in turn.

i) We first note that the mass-to-light ratio can be written as:

Mvir/L = Avir(M
star
bo )βvir × γstar, (6.12)

where γstar ≡ M star
bo /L is the stellar mass-to-light ratio, that, as already explained,

can be considered to be independent of the E galaxy luminosity or ELO mass scale.

Figure 6.5 and the values of the βvir slopes given in Table 6.3, indicate that the dark

to bright mass content of ELOs increases with their mass, contributing a tilt to their

IDPs. Similar results have also been found in pre-prepared simulations of dissipative

mergers (Robertson et al., 2006). Note that we have already seen that M star
cyl,bo wM star

bo

(see Section 4.5).

ii) Writing the cvir
M mass structure coefficients as power laws cvir

M = AM(M star
bo )βM ,

ELO homology would imply βM = 0. To elucidate whether or not this is the case, the

βM slopes have been measured on the ELO samples through direct fits in log-log scales.

The results are given in Table 6.3, where we see that the homology is in fact broken both

for EA-Z0 or EB -Z0 samples. To deepen into the causes of this behavior, we remember

here Equation 3.8:

cvir
M ≡ cf × cr × cv, (6.13)

Furthermore, from the definitions of the cv and cr coefficients (Equations 3.6 and

3.7), we note that both coefficients can be split into two terms, making our analysis

clearer. First, one addressing the dissipation and gas cooling effect, this is, the change

from the halo scale parameters that take into account the total matter, to the baryonic

object scale parameters that includes only stars. The second one takes into account

the projection, geometrical and concentration effects, indicating the change from the

3D baryonic scale parameters to the projected baryonic scale parameters which are the

ones observed. So, we rewrite the velocity term as:

cv ≡ cvd × cvpc (6.14)

with

cvd ≡ (σtot
3,h)2/(σstar

3,bo)2 (6.15)

and

cvpc ≡ (σstar
3,bo)2/3(σstar

los,0)2 (6.16)
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And for the size coefficient, we can write

cr ≡ crd × crp (6.17)

where

crd ≡ rtot
e,h/r

star
e,bo (6.18)

and

crp ≡ rstar
e,bo/R

star
e,bo (6.19)

Finally, using these new definitions we have that,

cvir
M = cf × crd × crp × cvd × cvpc, (6.20)

So these parameters have to explain the slope (βM 6= 0) observed for the homology

coefficient, cM
vir. Taking into account the power-law forms of these coefficients, we have:

βM = βF + βrd + βrp + βvd + βvpc, (6.21)

when the βi slopes are calculated through direct fits.

First of all, we have already seen in Section 6.2.1 (Figure 6.3 and Table 6.3) that

the cf coefficient is independent of the ELO mass scale or SF parameter values and that

ELOs satisfy the virial theorem at the halo scale. Consequently we have to study the

two other coefficients and dilucidate which of them are relevant to explain the tilt of

the Fundamental Plane.

Concerning sizes, in Figure 6.11 we plot the crd ≡ rtot
e,h/r

star
e,bo ratios versus the M star

bo

mass scale for ELOs in both the EA-Z0 and the EB -Z0 samples. In this Figure the

effects of SF parameterization are clear: EA-Z0 type ELOs have larger sizes relative

to the halo size than EB -Z0 type ELOs. There is also a clear mass effect, with more

massive ELOs less concentrated relative to the total mass distribution than less massive

ones (i.e., spatial homology breaking; note, however that the scatter is important).

Moreover, Figure 6.11 suggests that this trend does not significantly depend on the

SF parameterization. These indications are quantitatively confirmed through a fit to

a power law crd = Ard(M star
bo )βrd (see Table 6.3) and have interesting implications to

explain the tilt of the observed FP.

Now, let us move to the observationally relevant scale lengths, the projected half-

mass radii Rstar
e,bo. Their correlations with their intrinsic three dimensional counterparts

rstar
e,bo are very good, as illustrated in Figure 6.12, where the very low dispersion in the

plots of the crp ≡ rstar
e,bo/R

star
e,bo ratios versus the stellar mass M star

bo can be appreciated.

The results of a fit to a power law of the form crp = Arp(M star
bo )βrp , are given in Table

6.3 where we see that the crp ratios show a very mild mass dependence in the EA-Z0

sample and none in the EB -Z0 sample. In Table 6.3 we also present the value of this
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Figure 6.11: The crd ≡ rtot
e,h/r

star
e,bo ratios as a function of the ELO mass scale. Symbols

are as in previous Figures. Spatial homology breaking is clear in this Figure.

slope for the EA-STAR-Z0 sample2 obtaining same conclusions as with the EA-Z0 and

EB -Z0 samples. This result is important because it indicates that the observationally

available projected radii Rstar
e,bo are robust estimators of the physically meaningful size

scales rstar
e,bo.

Figure 6.12: The crp ≡ rstar
e,bo/R

star
e,bo ratios versus the stellar masses at the baryonic object

scale. Symbols are as in previous Figures. Error bars account for projection effects.

Next we study the velocity coefficients. In Figure 6.13 we plot the cvd ≡ (σtot
3,h/σ

star
3,bo)2

ratios, that measure how dissipation and concentration affect, on average, to the rela-

tive values of the dispersion at the halo scale (involving also dark matter) and at the

2EA-STAR-Z0 sample is a larger sample and more representative of a real one because it includes
ELOs that are not isolated up to the halo scale (see Section 4.4.1).
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baryonic object scale. No mass effects are apparent in this Figure, but an average

kinematical segregation is clear, (see Table 6.3 for the results of a fit to the expres-

sion cvd = Avd(M star
bo )βvd). These are important results, which could have interesting

observational implications.

Figure 6.13: The cvd ≡ (σtot
3,h/σ

star
3,bo)2 ratios (average kinematical segregation) as a func-

tion of the ELO mass scale. Symbols are as in previous Figures. No dynamically
broken homology can be seen in this Figure, but the kinematical segregation between
dark matter and stars is clear.

In Figure 6.14 we plot the cvpc ≡ (σstar
3,bo)2/3(σstar

los,0)2 ratios versus the ELO mass

scale. We see that a significant mass effect is not apparent, and this is quantitatively

confirmed in Table 6.3, where the results of a fit of the form cvpc = Avpc(M
star
bo )βvpc are

given. We also see that due to radial anisotropy, cvpc < 1, with no SF parameterization

effect. In Table 6.3 we also present the value of this slope for the EA-STAR-Z0 sample3

obtaining same conclusions as with the EA-Z0 and EB -Z0 samples. So, there is not

mass bias when using σstar
los,0 as an estimator for σstar

3,bo, but some warnings are in order

concerning anisotropy effects.

To sum up, we see that, irrespective of the SF parameterization, the main contribu-

tion to the homology breaking comes from the crd coefficients (Guzman et al., 1993, i.e.,

spatial homology breaking, see), while βvd have values consistent with cf and cvd being

independent of the ELO mass scale, i.e., no dynamical homology breaking. crp and cvpc

show a very mild mass dependence in the EA-Z0 sample and none in the EB -Z0 sample,

indicating that projection effects are not important in our ELO samples.

To estimate the contributions of projection effects, we built 40 new samples from

EA-Z0 (EA-TEST1) and other 40 from EB -Z0 (EB -TEST1), taking the same number

3EA-STAR-Z0 sample is a larger sample and more representative of a real one because it includes
ELOs that are not isolated up to the halo scale (see Section 4.4.1).
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Figure 6.14: cvpc ≡ (σstar
3,bo)2/3(σstar

los,0)2 ratios versus the ELO mass scale. Symbols are
as in previous Figures. Error bars account for projection effects.

of objects but randomly choosing for each object one of the one hundred projections.

For all the samples the same analysis made for EA-Z0 and EB -Z0 has been repeated,

obtaining the same results as before. In column 2 of Table 6.4 two of these analyses

are presented. As we can see the differences do not change the conclusions obtained

before, although the errors clearly increase. A larger sample is built taking the whole

one hundred projections for each ELO. Columns 3 and 4 of Table 6.4 show results for

EA-Z0 sample (EA-TEST2) and for EB -Z0 (EB -TEST2), respectively. Results of these

tests confirm our previous conclusions. These are that at least half of the tilt of the

fundamental plane has its physical origin in that mass fraction of stars bound to the

ELOs (similar results when using cold baryons) relative to the virial mass, decrease

with the mass scale. The physical origin of the other part can be explained in terms

of homology breaking, particularly from characteristics lengths between halo scale and

ELO scale. The characteristic length at ELO scale, rstar
e,bo, relative to the characteristic

distance at halo scale, rvir is not constant for all ELOs, it increases for more massive

ELOs. These trends are due to a systematic decrease with increasing ELO mass, of the

relative amount of dissipation experienced by the baryonic mass component along ELO

formation.

6.2.5 The Scatter of the Fundamental Plane

We now turn to consider the scatter of the dynamical FP for the ELO samples and

compare it with the scatter of the FP for the SDSS elliptical sample, calculated as

the square root of the smallest eigenvalue of the 3×3 covariance matrix in the E (or

logL), V ≡ log σstar
los,0 and R ≡ logRstar

e,bo variables (Saglia et al., 2001). As Figure 6.8

suggests, when projection effects are circumvented by taking averages over different
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EA-Z0 EB -Z0 EA-STAR-Z0

M1 0.238 ± 0.039 0.277 ± 0.059 0.264 ± 0.024
βvir 0.221 ± 0.083 0.237 ± 0.158 –
βM -0.162 ± 0.140 -0.167 ± 0.288 –

βf 0.048 ± 0.040 -0.007 ± 0.072 –
βvd 0.000 ± 0.037 0.000 ± 0.113 –
βvpc 0.012 ± 0.033 0.069 ± 0.109 0.006 ± 0.038
βrd -0.231 ± 0.146 -0.247 ± 0.266 –
βrp 0.011 ± 0.012 0.026 ± 0.021 0.022 ± 0.014

Table 6.3: Slopes for Linear Fits. Column 2: the slopes of the κD
3 = M1κ

D
1 +M0 relation

(direct fits); the slopes of the Mvir/M
star
bo ∝ (M star

bo )βrmvir and ci ∝ (M star
bo )βi scaling

relations for the EA-Z0 sample, calculated in log− log plots through direct fits. Errors
stand for their respective 95% confidence intervals obtained using Student distribution.
Columns 3: same as columns 2 for the EB -Z0 sample. Columns 3: same as columns 2
for the EA-STAR-Z0 sample. In this case only slopes at the baryonic object scale can
be calculated.

Parameter EA-TEST1 EB -TEST1 EA-TEST2 EB -TEST2

M1 0.286 ± 0.054 0.297 ± 0.071 0.256 ± 0.005 0.293 ± 0.007
βM -0.267 ± 0.186 -0.184 ± 0.305 -0.155 ± 0.016 -0.166 ± 0.028

βvpc -0.013 ± 0.090 0.032 ± 0.092 0.017 ± 0.015 0.064 ± 0.019
βrp 0.023 ± 0.053 0.007 ± 0.089 0.010 ± 0.004 0.023 ± 0.009

Table 6.4: Slopes for linear fits EA-Z0 and EB -Z0 test samples relating projection
effects. Column 2: the slopes of the κD

3 = M1κ
D
1 +M0 relation (direct fits); the slopes of

the ci ∝ (M star
bo )βi scaling relations for the EA-Z0 sample, calculated in log− log plots

through direct fits. Errors stand for their respective 95% confidence intervals. Column
3: the same slopes as column 2 for a random projection of EB -Z0 sample. Column 4:
the same slopes as column 2 for a sample built with all the projections for each ELO of
the EA-Z0 sample. Column 5: same as column 4 for EB -Z0. See text for details.
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Parameter EA-Z0 EB-Z0 EA-STAR-Z0

σEVR 0.0183 0.0178 0.0224

EA-TEST1 EB-TEST1 EA-TEST2 EB-TEST2

σEVR 0.0361 0.0288 0.0339 0.0297

SDSS z band r band

σLV R 0.0489 0.052

Table 6.5: Scatter of the Fundamental Plane for the different samples and for different
bands of the SDSS early-type sample (Bernardi et al., 2003c).

directions, the resulting three dimensional orthogonal scatter for ELOs is smaller than

for SDSS ellipticals: σEVR = 0.0164 and σEVR = 0.0167 for the EA-Z0 and EB -Z0

samples, respectively, to be compared with σLVR = 0.0489 for the SDSS z band in the

logL, V ≡ log σ0 and R ≡ logRlight
e variables (see Table 6.5). We also present in this

table the scatter of the dynamical FP for the EA-STAR-Z0 sample showing that it is also

smaller than for the SDSS ellipticals. This is a larger sample and more representative

of a real one because it includes ELOs that are not isolated up to the halo scale (see

Section 4.4.1).

To estimate the contribution of projection effects to the observed scatter, we have

used the TEST1 and TEST2 samples mentioned above. First we have calculated the

scatter for EA-Z0 and EB -Z0 ELOs building a sample using just one random projection

for each virtual elliptical (TEST1). We have also calculated the orthogonal scatter for

ELOs when no averages over projection directions for the Rstar
e,bo and σstar

los,0 variables are

made (TEST2). In both cases, and for both SF parameterizations, the scatter increases

(see Table 6.5), but it is still lower than observed. This indicates that a contribution

from stellar population effects is needed to explain the scatter of the observed FP, as

suggested by different authors (see, for example, Pahre et al., 1998; Trujillo et al., 2004;

Hyde & Bernardi, 2008b).
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6.3 The Photometric Plane

In the last years a great interest has arisen for the good correlations between the shape

parameter, n, obtained from the surface brightness profiles of galaxies and all the other

structural and kinematic fundamental parameters (see discussion in Section 3.2.2). We

have already seen in section 5.2.6 that our ELOs are also well described by a Sérsic law.

Now we will focus on the different relations between these fundamental parameters.

First of all we want to notice that the values obtained are in good agreement with

observation (Caon et al., 1993; Prugniel & Simien, 1997; Graham, 1998; Márquez et al.,

2000; D’Onofrio, 2001; Trujillo et al., 2001; Vazdekis et al., 2004; Graham et al., 2006),

including their correlations with the effective radii Rlight
e and velocity dispersion, as

illustrated in Figures 6.15(a) and 6.15(b). In Figure 6.15(a) we plot the shape parameter

n versus the ELO projected stellar half-mass radii, Rstar
e,bo, defined by the condition that

M star
cyl (Rstar

e,bo) encloses half the total stellar mass of the system; assuming that γstar
B does

not depend on R, we will have Rstar
e,bo ' Rlight

e . Green triangles are data on n and

Rlight
e from D’Onofrio (2001). Note that a slight effect resulting from the different SF

parameterization in EA-Z0 and EB -Z0 samples is apparent in this plot, mainly due

to the smaller sizes of EB -Z0 sample ELOs as compared with their EA-Z0 sample

counterparts. Figure 6.15(b) shows the central l.o.s. velocity dispersion, σstar
los,0, versus

the shape parameter, n obtained from the Sérsic fits. Filled red circles stand for the EA-

Z0 ELO sample and empty blue circles for the EB -Z0 sample. Green triangles stand for

Vazdekis et al. (2004). The good correlation between the shape parameter n and other

structural or kinematic parameters indicate a break of the structural homology of ELOs,

that is, mass density profiles of ELOs varies according with their mass: more massive

galaxies are more centrally concentrated that less massive ones. This consolidates similar

conclusions obtained in previous section.

The Photometric Plane relation relates the Rlight
e , µe and n observational param-

eters (see Section 3.2.2.2). Following the same idea that we used when we studied

the projected stellar mass density profiles (see section 4.5.3), we define an analogous

relation for our elliptical-like objects, the Structural Photometric Plane (SPhoP) as:

logRstar
e,bo = A log n + B logM star

bo + C, i.e., replacing the surface brightness with the

stellar mass. We have calculated the orthogonal least square fit of this equation for

the EA-Z0 sample obtaining: AEA
Z0 = −0.30186; BEA

Z0 = 0.87653; CEA
Z0 = −9.86211

and an orthogonal dispersion, σEAnRM,z0 = 0.0556. For the EB -Z0 sample we obtained:

AEB
z0 = 0.25221; BEB

z0 = 0.724734; CEB
z0 = −7.807486 and σEBnRM,z0 = 0.0633. In Fig-

ure 6.16, we plot the edge-on projection of this plane for the EA-Z0 and EB -Z0 samples.

In Table 6.6 we present the different parameters that define the SPhoP for the EA-Z0,

EB -Z0 and EA-STAR-Z0 samples. As expected the SPhoP obtained for the EA-STAR-

Z0 sample 4 is very similar as the one obtained for the EA-Z0. Present results show

4EA-STAR-Z0 sample is a larger sample and more representative of a real one because it includes
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Figure 6.15: Fig. 6.15(a): The Sérsic shape parameter, n, versus the projected stellar
half-mass radii, Re, for EA-Z0 sample (red filled circles) and EB -Z0 sample (blue open
circles). For each ELO, the mean of projections along one hundred random directions
are shown. Error bars stand for the dispersion generated just by projection effects.
Green filled triangles are data on n and Rlight

e from D’Onofrio (2001). Fig. 6.15(b): The
central l.o.s. velocity dispersion, σstar

los,0, versus the shape parameter obtained from the
Sérsic fits. Filled red circles stand for the EA-Z0 ELO sample and empty blue circles
for the EB -Z0 sample. Green triangles stand for Vazdekis et al. (2004) local galaxies
data.

that the Photometric Plane could be an interesting alternative tool for the study of

elliptical galaxies at high redshifts instead of the Fundamental Plane, which requires a

heavy amount of time for measuring velocity dispersions.

We have confirmed observational results (Khosroshahi et al., 2000; Graham, 2002)

that indicate that the logarithms of n, Rstar
e,bo and M star

cyl,bo populate, at z = 0 a flattened

ellipsoid close to a two-dimensional plane (the SPhoP). We have checked that we obtain

the same results either when we use the Rstar
e,bo and M star

cyl,bo terms obtained from the

Sérsic fits or those obtained directly from the projected mass profiles.

6.3.1 The Hyperplane in 4D

To explain this tight correlation among three parameters some authors have suggested

that the observational parameters n, Rlight
e , < I light >e and σ0 form a Hyperplane in

4D (Graham, 2002; Capozziello et al., 2007, see Section 3.2.2 for more details). In

this scenario the Photometric Plane and the Fundamental Plane would be just two

projections of this hyperplane. Since we have already confirmed that our samples of

elliptical-like objects satisfy the Fundamental and Photometric Plane relations, we want

ELOs that are not isolated up to the halo scale (see Section 4.4.1).
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Figure 6.16: The Structural Photometric Plane at z = 0. Filled red circles stand for the
EA-Z0 ELO sample and empty blue circles for the EB -Z0 sample. Error bars account
for projection effects.

to explore this possibility.

We have made a Principal Component Analysis (PCA) between the different pa-

rameters involved in these relations and compared the orthogonal dispersion obtained

for each one. We have done this for the Rstar
e,bo-M star

cyl,bo relation, the Dynamical Plane, the

Structural Plane and the Hyperplane in 4D. Also in order to check for the importance

of projection effects we have done two things. First, we have built random samples of

elliptical-like objects, this is, using just one random line-of-sight projection for each ob-

ject instead of the mean value over one hundred. Second, we have extended this study

to the 3D counterparts of all these relations. In the case of the Fundamental Plane we

have used the 3D quantities already discussed in Section 6.2, rstar
e,bo, σstar

3,bo and M star
bo that

form the Intrinsic Dynamical Plane (IDP). Our analogous of the Photometric Plane in

3D, the Intrinsic Structural Plane (ISP), have been built using the µ term obtained

from the fits of the Einasto equation (see Equation 4.11) to the 3D star mass density

profiles of our simulated ellipticals presented in Section 5.2. As well as for the Struc-

tural Photometric Plane, we have found similar results using the characteristic radius

and mass obtained from the fits or those obtained directly from the mass profiles. The

orthogonal dispersion for each relation can be seen in Table 6.7.

From these numbers we can obtain several interesting remarks. First of all, we
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Sample # AEA
z BEA

z CEA
z λ1 λ2 λ3 σnRE

z

EA-Z0 26 -0.30186 0.87653 -9.86211 0.12992 0.010797 0.003091 0.0556
EB -Z0 17 0.25221 0.72473 -7.80749 0.08067 0.008392 0.004006 0.0633
EA-STAR-Z0 56 -0.20651 0.84024 -8.51504 0.16439 0.014430 0.004547 0.0674

Table 6.6: Principal component analysis of mass, radius and dispersion velocity for EA-
Z0, EB -Z0 and EA-STAR-Z0 samples. Column 2: number of objects in the sample.
Columns 3, 4 and 5: coefficients of Equation 8.2 at each z. Columns 6, 7 and 8: eigen-
values of the correlation matrix. Columns 9: rms orthogonal scatter of the photometric
plane at each z.

Mass-Radius Fundamental Plane Photometric Plane Hyperplane in 4D

2D

Rstar
e,bo, M star

cyl,bo Rstar
e,bo, M star

cyl,bo, σstar
los,0 Rstar

e,bo, M star
cyl,bo, n Rstar

e,bo, M star
cyl,bo, σstar

los,0, n
σort
random 0.0625 0.0276 0.0580 0.0292
σort
mean 0.0592 0.0194 0.0556 0.0193

3D

rstare,bo, M star
bo rstare,bo, M star

bo , σstar
3,bo rstare,bo, M star

bo , µ rstare,bo, M star
bo , σstar

3,bo, µ
σort 0.0617 0.0145 0.0533 0.0144

Table 6.7: r.m.s. orthogonal scatter for the different relations between structural and
kinematic parameters studied in our samples.

confirm that the Photometric Plane shows a slightly tighter correlation that the one

obtained from the mass-radius relation. This is especially true for the random sample

that is supposed to be closer to a real observational sample. We can also see that for all

the possible combinations the Fundamental Plane shows a stronger correlation than the

Photometric Plane and a great improvement relative to the radius-mass relation. Finally

the Hyperplane in 4D presents the same dispersion as the Fundamental Plane. This

indicates that we are not adding more information to this relation when we introduce the

shape parameter n. However it is clear that we are not introducing a random variable

either because this would make the orthogonal dispersion to increase. So, these results

seem to indicate that although the shape parameter, n (or µ for the 3D profile), is very

tightly correlated with all the parameters involved in the Fundamental Plane, it may

not add any physical information to this relation.

In this sense, we have found that the Fundamental Plane and the Photometric

Plane are not projections of a Hyperplane in 4D. It would be interesting to see what

happens when the projection effects are circumvented in observations. Either because

the statistical number of ellipticals in the Photometric Plane studies increase, or because

the deprojection techniques evolve enough to get reliable predictions of the 3D structure

of the galaxies. In both cases our results give a prediction of what could be found.

Anyway, up to that moment the Photometric Plane seems to be a very powerful tool

both for theoreticians and observers. This is especially true taking into account the
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observational low cost of obtaining the shape parameter, n comparing with obtaining

σ0.

6.4 Stellar Population Properties

The final step in the analysis of virtual elliptical samples at redshift z = 0 is presented

in this section. We have studied the stellar population properties of our ELOs and

compare them with observational results. We have already discussed that elliptical

galaxies present age effects with mass and that these effects link elliptical dynamical

properties with the characteristics of their stellar population (see Section 3.3). To

quantify these effects in our ELO samples, the global mean age, t̄ of their stellar mass,

M star
bo , have been calculated. In addition, we have measured the percentiles of ELO

stellar age distributions, tf , at which the fraction f% of the stellar mass at z = 0, M star
bo ,

was already formed. We have done it for f = 10, 50, 75, 90. We have considered the

difference ∆t = t75− t10 as an estimation of the global width or timescale for ELO star

formation.

We have found that for any f a trend exists with Mvir. The observational age

effects with σstar
los,0 arise because, as we have already seen above (Section 6.2.3), Mvir

and σstar
los,0 are on their turn tightly correlated, making σstar

los,0 an empirical virial mass

estimator. As an illustration of these trends, in Figure 6.17 (upper panel) we plot the

mean age versus σstar
los,0 for the EA-Z0 and EB -Z0 samples and verify that they compare

adequately well with relative mean age determinations through population synthesis

modeling for Es obtained by Thomas et al. (2005). Lower panel of Figure 6.17 shows

that observational width determinations from synthesis models (Thomas et al., 2002,

2005) are consistent with ELO widths. Therefore we see that, as for observational data,

more massive ELOs have older mean ages and narrower spreads in the distributions of

their stellar populations (downsizing). Note that these trends are independent of the

particular details of the SF implementation, although their zero-point seems to depend.

This result points to a contribution of purely dynamical effect with a cosmological origin

for these trends, and plays a very important role in the development of the elliptical

galaxy formation and evolution scenario (see Chapter 9).
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Figure 6.17: Upper panel: Mean age of the stellar population of our simulated ellipti-
cals. Full green line is the observational fit obtained by Thomas et al. (2005) for high
density environments. Dashed lines shows the error of this fit just taking into account
errors in the age estimation. Lower panel: The width of the stellar population age
distribution from our ELO samples compare with the one obtained from observations
trough synthesis models (Thomas et al., 2005). In both panels, red filled circles stand
for the EA-Z0 sample and blue open circles for the EB -Z0 sample. Error bars account
for projection effects.
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6.5 Robustness of Results and Beyond: Test Samples

In order to test the robustness of our results we have run a set of test simulations and

built their corresponding ELO samples (see Section 4.2 and 4.4). In this Section we

will discuss whether or not, slight changes in the cosmological model (EC -Z0 sample), a

higher resolution (ED-Z0) and using a larger box size (EF1-Z0 and EF4-Z0), can affect

the different results and conclusions presented in previous sections.

We have used these samples not only to test the robustness of all our results and

conclusions but also to try to expand them. In this section we will focus on the virtual

ellipticals at z = 0 of all these runs. In the next Chapters we will discuss on the

formation and evolution scenario of these galaxies and how these test samples help to

clarify it.

6.5.1 Changes in the Cosmological Model

We want to check if slight changes in the values of the ΩΛ, Ωbaryon or h parameters can

affect the general trends found in ourEA and EB samples. Specifically, we have run

the (EC ) simulation with the same parameters as in EA sample but for changing the

cosmological parameters to their preferred WMAP values (Spergel et al., 2003). See

Table 4.1 and Section 4.2 for more details.

We first check whether these ELOs satisfy the Fundamental Plane relation found

in previous samples. In Figure 6.18 we plot the κ-space coordinates (left panel) and

the Mvir/M
star
bo ratios. We have also performed the same analysis done in 6.2.4, to test

not only the Fundamental Plane by itself but, also, the origin of their tilt, i.e., the

relation between the Fundamental Parameters at different scales. To perform this test

we replaced ELOs of one of the simulation of the EA-Z0 sample with ELOs identified in

EC -Z0 simulation. Results of the fits are shown in Table 6.8 and 6.9 and indicate that

there is no statistical difference between these two sets of ELOs. We can also see that

these new ELOs seem to be less massive than the EA-Z0 sample. Although this could

be true due to the change of the global cosmological parameters Ωb and Ωm to a lower

value, in our case, this effect has more to do with the fact that the three more massive

objects in the EC -Z0 sample are merging and cannot be included in the sample. This

fact reduces the range of masses that can be studied with this simulation.

In Figure 6.19 we can appreciated other structural parameters that confirm that

the ELOs of this simulation not only satisfy all the scaling relations found for the EA

sample, but also that the zero-point of these trends do not really differ between both

runs.

Finally, another important point is that stellar population properties and the trends

found with the dynamical parameters, as σstar
los,0, holds for the EC -Z0 sample. As ex-

pected, it shares the same zero point as the EA-Z0, as they both have the same star
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Figure 6.18: Robustness of results. Cosmology test I: The Fundamental Plane in kappa
space (left) and the Mvir/M

star
bo ratio versus M star

bo (right) for the EC -Z0 sample (violet
filled circles). To compare with previous results, EA-Z0 (red filled circles) and EB -Z0
(blue empty circles) samples are also shown. Error bars account for projection effects.

formation parameters (see Figure 6.20). This is a very important result because it in-

dicates that the stellar age properties are linked with star formation parameters rather

than with changes in the cosmological parameters: ΩΛ, Ωm, Ωb and h.
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Figure 6.19: Robustness of results. Cosmology test II: Different structural parameters
for the EC -Z0 sample (violet filled circles) that characterize their profiles. The dark-
over-total mass ratio (upper left), gradients of the projected mass profiles (upper left),
the total density profile slope obtained from fitting ρtot(r) r−γ (lower left) and the
shape parameter n versus M star

bo . To compare with previous results, EA-Z0 (red filled
circles) and EB -Z0 (blue empty circles) samples are also shown. Error bars account for
projection effects.
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Figure 6.20: Robustness of results. Cosmology test III: Upper panel: Mean age of the
stellar population of our simulated ellipticals. Full green line is the observational fit
obtained by Thomas et al. (2005) for high density environments. Dashed lines shows
the error of this fit just taking into account errors in the age estimation. Lower panel:
The width of the stellar population age distribution from our ELO samples compare
with the one obtained from observations trough synthesis models (Thomas et al., 2005).
In both panels, red filled circles stand for the EA-Z0 sample, blue open circles for the
EB -Z0 sample and violet filled circles for the EC -Z0 sample. Error bars account for
projection effects.
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6.5.2 Possible Resolution Effects

To test whether or not the resolution of our simulations can affect our conclusions, we

have checked if the simulated ellipticals of a higher resolution simulation follow the same

trends found for the EA-Z0 sample. We have used a ED simulation (S7714) with the

same parameters as in the EA simulations but with more 2×1283 particles and a higher

softening length (ε = 0.00075). See Table 4.1 and Section 4.2 for more details.

Figure 6.21 shows the FP in kappa coordinates (see Equations 6.5-6.7) and confirms

that this relation holds for the new sample, with the same tilt and zero point those of

the EA-Z0 sample. To check whether this is true for the different relations at halo and

baryonic scale we have performed the same statistical study of the tilt and scatter of

the Fundamental Plane, done in the cosmological test, for the EC -Z0 sample. Column

two of Tables 6.8 and 6.9 present these results. Figure 6.22 shows also another set of

structural parameters that define the dark matter, stellar and total mass distribution.

In all of them we see no remarkable differences between the higher resolution sample

and the EA-Z0 one.

Figure 6.21: Robustness of results. Resolution test I: The Fundamental Plane in kappa
space (left) and the Mvir/M

star
bo ratio versus M star

bo (right) for the ED-Z0 sample (cyan
filled pentagons). To compare with previous results, EA-Z0 (red filled) and EB -Z0 (blue
empty) samples are also shown. Error bars account for projection effects.

In these Figures we can see that the simulated ellipticals resulting from a higher

resolution confirm all our previous conclusions. Moreover it seems that they also hold

for ellipticals of masses lower than the ones we reached in the EA and EB samples.

Otherwise, Figures 5.19 and 5.20 show that two-body relaxation effects (typically the

most stringent requirement for convergence) have not been important at least for r larger

than ∼ 1 kpc. In fact, two-body relaxation effects cause energy equipartition. But the

values of the σstar
3D (r)/σdark

3D (r) ratios we have obtained (' 0.8) exclude energy equiparti-
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Figure 6.22: Robustness of results. Resolution test II: Different structural parameters
for the ED-Z0 sample (cyan filled pentagons) that characterize their profiles. The dark-
over-total mass ratio (left), gradients of the projected mass profiles (center) and the
total density profile slope obtained from fitting ρtot(r) r−γ (right). To compare with
previous results, EA-Z0 (red filled circles) and EB -Z0 (blue empty circles) samples are
also shown. Error bars account for projection effects.

tion among dark matter and stellar particles in ELOs, because such equipartition would

demand σstar
3D (r)/σdark

3D (r) =
[
mdark/mstar

]0.5
= 2.194, where mdark = 1.29× 108M� and

mstar = 2.67 × 107M� are the mass of dark and stellar particles, respectively. This

result is important because it shows that two-body relaxation effects have played no

important role in the gravitational interaction.

Concerning age stellar population in Figure 6.23 we plot the mean and width of the

stellar age distribution of the ED-Z0 sample. We found that this sample presents the

same trends found in EA-Z0 y EB -Z0 and shares the zero-point with the first one.
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Figure 6.23: Robustness of results. Resolution test III: Upper panel: Mean age of the
stellar population of our simulated ellipticals. Full green line is the observational fit
obtained by Thomas et al. (2005) for high density environments. Dashed lines shows
the error of this fit just taking into account errors in the age estimation. Lower panel:
The width of the stellar population age distribution from our ELO samples compare
with the one obtained from observations trough synthesis models (Thomas et al., 2005).
In both panels, red filled circles stand for the EA-Z0 sample, blue open circles for the
EB -Z0 sample and cyan filled pentagons for the ED-Z0 sample. Error bars account for
projection effects.
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6.5.3 Box Size Effects

To make sure that the results we report in this study are not unstable under changes in

the box size of the simulations, we have run several new ones with 8 times and 512 times

the volume of the EA and EB runs, i.e. Lbox = 20 Mpc and Lbox = 80 respectively

(EF1-2 and EF3 runs). We have also increased the number of particles by the same

factor to obtain identical physical resolution. See Table 4.1 and Section 4.2 for the

details on their implementation. Again, have used different strong correlations found in

EA samples to check our results.

6.5.3.1 Lbox = 20 Mpc

Figure 6.24 shows the Fundamental Plane projections in kappa coordinates and the

Mvir/M
star
bo ratio for the virtual ellipticals of EF1-Z0 simulation (orange circles) and the

EA-Z0 and EB -Z0 sample (red and blue respectively). We have performed a statistical

analysis as the one made in Section 6.2.4 to study the origin of the tilt of the Funda-

mental Plane. Results of these statistical analyses can be found in Tables 6.8 and 6.9.

From all this data it seems that the EF1-Z0 sample follows exactly the same trends

found for the EB -Z0 sample rather than that found for the EA-Z0 sample, even if the

star formation parameters of the EF1 run are the same as this last one. This can be

due to the different gravitational softening parameter, ε, employed in this simulation,

as it is a bit higher than the EA and EB runs.

Figure 6.24: Robustness of results. Box size test I: Lbox = 20 Mpc. The Fundamental
Plane in kappa space (left) and the Mvir/M

star
bo ratio versus M star

bo (right) for the EF1-
Z0 sample (orange filled circles). To compare with previous results EA-Z0 (red filled
symbols) and EB -Z0 (blue empty symbols) samples are also shown. Error bars account
for projection effects.

In Figure 6.25 we plot a set of different parameters that define the dark matter,
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stellar and total mass distribution of the EF1-Z0 sample. These plots confirm the idea

that the EF1-Z0 sample is much more similar to the EB -Z0 than to EA-Z0, and that,

in any case, all the conclusions discussed above hold for this new sample.

Figure 6.25: Robustness of results. Box size test II: Lbox = 20 Mpc. Different structural
parameters for the EF1-Z0 sample (orange filled squares) that characterize their profiles.
The dark-over-total mass ratio (upper left), gradients of the projected mass profiles
(upper left), the total density profile slope obtained from fitting ρtot(r) r−γ (lower left)
and the shape parameter n versus M star

bo . To compare with previous results, EA-Z0 (red
filled symbols) and EB -Z0 (blue empty symbols) samples are also shown. Error bars
account for projection effects.

Finally we have studied the stellar properties of this sample and compared them

with the EA-Z0 and EB -Z0 samples. Figure 6.26 shows the results. Again we found

that the trends with dynamical parameters are very similar to the EB -Z0. This is in

agreement with the idea, discussed above, of the origin of trends between stellar and

dynamical properties of ELOs being highly linked with a dynamical origin. The fact
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that in the test sample, ELOs of similar σstar
los,0 data present a higher dispersion both

in the mean stellar age and in the width of the distribution is related with the larger

box side. This would allow obtaining virtual ellipticals from a wider range of different

environments and history (passive evolution, mergers, etc).

Figure 6.26: Robustness of results. Box size test III: Lbox = 20 Mpc. Upper panel:
Mean age of the stellar population of our simulated ellipticals. Full green line is the ob-
servational fit obtained by Thomas et al. (2005) for high density environments. Dashed
lines shows the error of this fit just taking into account errors in the age estimation.
Lower panel: The width of the stellar population age distribution from our ELO sam-
ples compare with the one obtained from observations trough synthesis models (Thomas
et al., 2005). In both panels, red filled circles stand for the EA-Z0 sample, blue open
circles for the EB -Z0 sample and orange filled squares for the EF1-Z0 sample. Error
bars account for projection effects.
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6.5.3.2 Lbox = 80 Mpc

Figure 6.27 shows the Fundamental Plane projections in kappa coordinates and the

Mvir/M
star
bo ratio for the virtual ellipticals of EF1-Z0 simulation (orange circles) and

the EA-Z0 and EB -Z0 sample (red and blue respectively). In figure 6.28 EF3 ELO

sample and SDSS (z band) are shown in a mass, radius and velocity dispersion coor-

dinate system. Although with just 11 ELOs in the EF3 sample, we have performed a

statistical analysis as the one made in Section 6.2.4 to study the origin of the tilt of the

Fundamental Plane. Results of these statistical analyses can be found in Tables 6.8 and

6.9. From all these data it seems that the EF3-Z0 sample follows the same trends found

for the EA-Z0 sample. However, concerning the origin of the tilt of the Fundamental

Plane, we obtain a clear signal from the relative content of the baryonic and the dark

mass ELO components (βvir), but not for the relative distributions (βrd). Although this

contribution is not statistically discarded either, this result must be taken into account

at least until more statistics are available. Regarding the scatter of the Fundamental

Plane, it is important to point out that the different EF samples show just a slightly

higher scatter for the Dynamical Fundamental Plane than the smaller box samples,

even for the -STAR samples, and still thinner than the observational one. This result

indicates that stellar effects could have contributed to the scatter of the observed FP

(see Hyde & Bernardi, 2008b, for similar conclusion from recent observational results).

Finally we have studied the stellar properties of this sample and compared them

with the EA-Z0 and EB -Z0 samples. Figure 6.29 shows the results. We found that the

trends with dynamical parameters are very similar to the previous samples, sharing its

zero point with the EA-Z0 sample.

In this sense, our results concerning Lbox point to the same conclusion of Power et al.

(2003) in their convergence study of dark matter halos, i.e., the internal properties of

virialized objects do not strongly depend on the Lbox size. However simulations with

higher box sizes produce virtual objects with higher dispersion in the different environ-

ments and history. Therefore these simulations are more realistic and very well suited

in order to do statistical comparison with observations. On the other side, simulations

with a smaller box size can be better to isolate and study the different fundamental

physical processes that govern galaxy formation and evolution. In fact by combining

both types of them, we can study the influence of environment and history on the dif-

ferent structural and kinematical properties of ellipticals. Here we have seen that the

most important findings of our EA and EB simulations concerning the Fundamental

Plane and other relations holds for the EF samples.

Differences between EF samples are tiny. However one interesting point is the dif-

ferent total number of elliptical-like galaxies for each sample (see Section 4.4). This fact

seems to be related with two reasons. First one is related with the different environment

and history issue. In simulations with a higher σ8 everything occurs faster and therefore,
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at redshift zero we have more elliptical-like objects well defined at the halo scale. The

other important factor in the final number of ELOs is the specific cosmological model

selected. The ΩΛ, Ωm and Ωb parameters set the amount of baryonic matter that we will

have in our simulation to form our galaxies. Therefore, although with slight changes in

these values the main physical processes remain the same, these parameters determine

the mass distribution of our galaxy-like objects and as we have a fixed cut in resolution

we will have more objects as more baryonic matter is available in the simulation.

Figure 6.27: Robustness of results. Box size test Ia: Lbox = 80 Mpc. Left: The
Fundamental Plane in kappa space for the EF3-STAR-Z0 sample (dark violet filled
squares). To compare with previous results EA-STAR-Z0 (red filled symbols) and EB -
STAR-Z0 (blue empty symbols) samples are also shown. Right: The Mvir/M

star
bo ratio

versus M star
bo (right) for the EF3-Z0 sample (dark violet filled squares). To compare with

previous results EA-Z0 (red filled symbols) and EB -Z0 (blue empty symbols) samples
are also shown. Error bars account for projection effects.
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Figure 6.28: Box size test Ib: Lbox = 80 Mpc: The Dynamical Plane: Rstar
e,bo,M star

bo

and σstar
los,0 space for the EF3-STAR-Z0 sample (dark violet filled squares). To compare

with previous results EA-STAR-Z0 (red filled symbols) and EB -STAR-Z0 (blue empty
symbols) samples are also shown. Error bars account for projection effects. We also
draw the respective concentration ellipses (with their major and minor axes) for the
SDSS early-type galaxy sample from Bernardi et al. (2003b) in the z band (solid line).
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Figure 6.29: Robustness of results. Box size test III: Lbox = 80 Mpc. Upper panel:
Mean age of the stellar population of our simulated ellipticals. Full green line is the ob-
servational fit obtained by Thomas et al. (2005) for high density environments. Dashed
lines shows the error of this fit just taking into account errors in the age estimation.
Lower panel: The width of the stellar population age distribution from our ELO sam-
ples compare with the one obtained from observations trough synthesis models (Thomas
et al., 2005). In both panels, red filled circles stand for the EA-Z0 sample, blue open
circles for the EB -Z0 sample and dark violet filled squares for the EF3-Z0 sample. Error
bars account for projection effects.
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Parameter EC -Z0 ED-Z0 EF1-Z0 EF3-Z0

M1 0.237 ± 0.044 0.267 ± 0.040 0.225 ± 0.037 0.193 ± 0.111
βvir 0.217 ± 0.106 0.204 ± 0.096 0.280 ± 0.088 0.345 ± 0.166
βM -0.142 ± 0.167 -0.243 ± 0.147 -0.087 ± 0.116 0.092 ± 0.249

βf 0.060 ± 0.048 0.066 ± 0.052 0.028 ± 0.035 0.056 ± 0.060
βvd 0.004 ± 0.040 0.046 ± 0.061 -0.002 ± 0.032 -0.035 ± 0.072
βvpc 0.012 ± 0.040 -0.005 ± 0.039 0.034 ± 0.040 0.086 ± 0.107
βrd -0.228 ± 0.169 -0.356 ± 0.182 -0.167 ± 0.101 -0.045 ± 0.232
βrp 0.013 ± 0.013 0.008 ± 0.013 0.023 ± 0.013 0.026 ± 0.022

Table 6.8: Slopes for linear fits at z = 0 for the different test samples. Column 1:
the slopes of the κD

3 = M1κ
D
1 + M0 relation (direct fits); the slopes of the Mvir/M

star
bo

and ci ∝ (M star
bo )βi scaling relations, calculated in log− log plots through direct fits for

the cosmological test sample (EC simulation). Errors stand for their respective 95%
confidence intervals. Column 2: same as columns 1 for the higher resolution sample
(ED simulation). Column 3 and 4: same as column 1 for the larger box size samples
(EF1 and EF3 simulation). See text for details.

Parameter EC -Z0 ED-Z0 EF1-Z0 EF1-STAR-Z0 EF3-Z0 EF3-STAR-Z0

σEV R 0.0197 0.0180 0.0215 0.0221 0.0188 0.0262

SDSS z band r band

σLV R 0.0489 0.052

Table 6.9: Scatter of the Fundamental Plane for the different test samples and for
different bands of the SDSS early-type sample. See text for details.

Sample No. Ẽ r̃ ṽ λ1 λ2 λ3 α3D γ3D σErv

EF1 21 11.026 0.545 2.308 0.24067 0.00409 0.00050 0.331 2.129 0.022
EF1-STAR-Z0 31 10.991 0.518 2.299 0.17578 0.00458 0.00046 0.402 1.975 0.021
EF3-Z0 11 10.816 0.416 2.278 0.13238 0.00846 0.00034 0.352 1.969 0.018
EF3-STAR-Z0 22 10.774 0.418 2.259 0.10602 0.00787 0.00041 0.377 1.943 0.020

Table 6.10: Results of PCA at z = 0. Column 2: ELO number in the sample. Columns
3, 4 and 5: sample mean values of the E, r and v variables. Columns 6, 7 and 8:
eigenvalues of the correlation matrix. Columns 9 and 10: coefficients of the plane (Eq.
6.1). Column 11: IDP scatter in the E, r and v variables.
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Sample # AEA
z BEA

z CEA
z λ1 λ2 λ3 σnRE

z

EF1-Z0 21 -0.41220 0.79899 -8.22228 0.22673 0.014084 0.002462 0.0496
EF1-STAR-Z0 31 -0.31867 0.75837 -7.70990 0.16490 0.019999 0.002774 0.0527
EF3-Z0 11 -0.49447 0.80827 -8.03058 0.13885 0.027877 0.003712 0.0609
EF3-STAR-Z0 22 -0.25006 0.74982 -7.58819 0.11996 0.027059 0.005245 0.0724

Table 6.11: Principal component analysis of mass, radius and dispersion velocity for EA-
Z0, EB -Z0 and EF3 simulations. Column 2: number of objects in the sample. Columns
3, 4 and 5: coefficients of Equation 8.2 at each z. Columns 6, 7 and 8: eigenvalues of
the correlation matrix. Columns 9: rms orthogonal scatter of the photometric plane at
each z.
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6.6 Discussion and Conclusions

In this Chapter we have reported on the structural and kinematical characteristic param-

eters of a set of samples of ELOs at z = 0, formed in different cosmological simulations.

In this sense we have followed with the analysis started in the previous chapter and

deepen into the different relations that all these parameters show. Our first goal in this

Section is to check the robustness of the main results presented in the two previous

Chapters.

6.6.1 Main Results

The first step in the program of studying the origins of EGs through self-consistent

simulations, we want to ensure that our ELO samples have counterparts in the real

local Universe. Concerning this goal, in this chapter an analysis of the structural and

dynamical ELO parameters that can be constrained from observations has shown that

they are consistent with those measured in the SDSS elliptical sample (see also Sáiz

et al., 2004), including the Fundamental Plane relation. We had already seen that the

projected stellar mass profile, Σstar(R), can be adequately fitted by a Sérsic-like law

(see Section 5.2.6). In addition, we have confirmed that the shape parameter values

n we have obtained are consistent with observations, including their correlations with

the ELO luminosity (mass), size and velocity dispersion (Photometric Plane relation).

Also, ELO stellar populations have age distributions with the same trends as those

inferred from observations, i.e., most stars have formed at high z on short timescales,

and, moreover more massive objects have older means and narrower spreads in their

stellar age distributions than less massive ones (Domı́nguez-Tenreiro et al., 2004).

These agreements with observational data strongly suggest that the intrinsic three-

dimensional dark and bright matter mass and velocity distributions we get in our simu-

lations might also adequately describe real ellipticals. Let us now summarize the main

results obtained from the study of the different characteristic parameters that describe

the structural and kinematical properties of our virtual ellipticals.

Mass, size and velocity dispersion scales for their different components have been

measured in the ELO samples, both at the scale of their halo and at the scale of the

baryonic object (a few tens of kiloparsecs). At the halo scale, the masses of both cold

gas and stars, M cb
h and M star

h , respectively, have been found to be tightly correlated

with the halo total mass, Mvir, with the ratios M cb
h /Mvir and M star

h /Mvir decreasing as

Mvir increases (that is, massive objects miss cold baryons within rvir when compared

with less massive ELOs), presumably because gas gets more difficulties to cool and fall

as Mvir increases. The overall half-mass radii, rtot
e,h shows also a very tight correlation

with Mvir. Half-mass radii for the cold baryon or stellar mass distributions have a more

complex behavior, as in these cases gas heating in shocks and energy losses due gas
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cooling are in competition to determine these distributions.

Another interesting result we have found when analyzing ELOs at the scale of the

baryonic object, is that Mvir plays an important role to determine the ELO structure

also below a few tens of kiloparsecs scales. In fact, both the masses of cold baryons

M cb
bo (i.e., those baryons that have reached the central regions of the configuration),

and of stars M star
bo , show a good correlation with Mvir, and, moreover, the M cb

bo/Mvir

and M star
bo /Mvir ratios (i.e., the relative content of cold baryons or stars versus total

mass) decrease as Mvir increases. This is the same qualitative behavior shown by these

ratios observationally in the SDSS data, and, also, by ELOs at the halo scale. The

dependence of M cb
bo or M star

bo on the SF parameterization is only very slight, with EA-

Z0 type ELOs having slightly more stars than their EB -Z0 type counterparts. The

half-mass radii for cold baryon and stellar masses, rcb
e,bo and rstar

e,bo, show also a good

correlation with Mvir, but now the values of the SF parameters also play a role, because

their change implies a change in the time interval during which gas cooling is turned on,

and this changes the ELO stellar mass distribution, i.e., its length scale, so that ELO

compactness increases from EA-Z0 to EB -Z0 type simulations. Another important

result is that, regardless of the SF parameterizations used in this work, the relative

distributions of the stellar and dark mass components in ELOs show a systematic trend

measured through the crd ≡ rtot
e,h/r

star
e,bo ratios, with stars relatively more concentrated

as Mvir decreases (i.e., a quantification of the spatial homology breaking). However it

is important to note that this trend is not statistically confirmed (nor discarded) in all

samples (see discussion in Section 6.5.3). Note that to compare with observational data,

the relevant parameters are the projected half-mass radii, Rstar
e,bo. We have checked that

they show an excellent correlation with the corresponding three dimensional half-mass

radii, with the crp ≡ rstar
e,bo/R

star
e,bo ratios showing no significant dependence on the ELO

mass scale.

Concerning kinematics, a useful characterization of the ELO velocity dispersion is

the central stellar line-of-sight velocity dispersion, σstar
los,0, whose observational counter-

part can be measured from elliptical spectra. A very important outcome is the very tight

correlation we have found between Mvir and σstar
los,0, confirming that the observationally

measurable σ0 is a fair virial mass estimator. In addition, σstar
los,0 is closely related to

the mean square velocity of both, the whole elliptical at the halo scale (including the

dark matter), σtot
3,h, and the stellar component of the central object, σstar

3,bo. We have also

found that the cvd ≡ (σtot
3,h/σ

star
3,bo)2 or the cvpc ≡ (σstar

3,bo)2/3(σstar
los,0)2 ratios are roughly

independent of the ELO mass scale. And so, ELOs do not show dynamically broken

homology, even if their stellar and dark components are cinematically segregated (i.e.,

cvd 6= 1). This could lead to inaccurate determinations of the total mass of ellipticals

when using stellar kinematics.

A very important result is that, irrespective of the SF parameterization, the (loga-
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rithms of the) ELO stellar masses M star
bo , stellar half-mass radii rstar

e,bo, and stellar mean

square velocity of the central object σstar
3,bo, define intrinsic dynamical planes (IDPs).

These planes are tilted relative to the virial plane and the tilt does not significantly

depend on the SF parameterization, but the zero point does depend. Otherwise, the in-

trinsic dynamical plane is not homogeneously populated, but ELOs, as well as E galaxies

in the FP (Guzman et al., 1993), occupy only a particular region defined by the range

of their masses. The observational manifestation of this relation is the Fundamental

Plane.

In addition, ELOs 3D structural parameters, M star
bo , rstar

e,bo and µ define intrinsic

structural planes (ISPs). However these planes are not as tightly correlated as the IDPs

ones. The Photometric Plane is the observational manifestation of this relation. We have

also discarded the possibility that the Fundamental Plane and the Photometric Plane,

are a projection of a four parameter law. We made the study for the 2D observational

relations and their 3D counterparts. We found that the shape parameter n (or µ in 3D)

does not add physical information to the Fundamental Plane relation (or intrinsic).

Stellar age properties of virtual ellipticals have shown a clear trend with their struc-

tural and dynamical characteristic parameters and seem to be linked with their forma-

tion and evolution processes in a cosmological scenario. Also, ELO stellar populations

have age distributions with the same trends as those inferred from observations, i.e.,

most stars have formed at high z on short timescales, and, moreover more massive ob-

jects have older means and narrower spreads in their stellar age distributions than less

massive ones (Domı́nguez-Tenreiro et al., 2004). This is equivalent to downsizing (see

3.3). We will discuss the implications of these results on the elliptical galaxy formation

and evolution scenarios in Chapter 9.

6.6.1.1 The Dimensionality of ELO and Elliptical Samples in Parameter

Space

The intrinsic dynamical planes and their occupations presented in this Chapter reflect

the fact that dark matter halos are a two-parameter family (for example, the virial

mass and the energy content or the concentration; see, for example, Hernquist, 1990;

Navarro et al., 1995, 1996; Manrique et al., 2003; Navarro et al., 2004b) where the two

parameters are correlated (see, for example, Bullock et al., 2001; Wechsler et al., 2002;

Manrique et al., 2003). Adding gas implies that heating and cooling processes also play

a role at determining the mass and velocity distributions, and, more particularly, the

length scales. However, as explained above, we have found that, the relative content

of the dark and baryonic mass components show systematic trends with the ELO mass

scale, that can be written as power-laws of the form Mvir/M
star
bo = Avir(M

star
bo )βvir . A

similar trend as the first one, although not statistically confirmed (nor discarded) in all

samples (see discussion in Section 6.5.3) is also observed in the relative distributions of
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the dark and baryonic mass components, rtot
e,h/r

star
e,bo = Ard(M star

bo )βrd .

A first consequence of the regularity of the trends with the mass scale found in this

Chapter is that no new parameters are added relative to the dark matter halo family,

so that the baryonic objects are also a two-parameter family, and ELO structural and

dynamical parameters define also a plane. A second consequence is that the plane is

tilted relative to the halo plane (i.e., the virial plane) because βvir − βrd 6= 0. Finally,

the plane is not homogeneously populated because of the mass-concentration halo cor-

relation that at the scale of the baryonic objects appears for example as a mass—size

correlation. This explains the role played by Mvir to determine the intrinsic three di-

mensional correlations. In this study we have also shown that σstar
los,0 is a fair empirical

estimator of Mvir, and this explains the central role played by σ0 at determining the

observational correlations.

The fundamental plane shown by real elliptical samples is the observationally man-

ifestation of the IDPs when using projected parameters Rstar
e,bo, σstar

los,0 and luminosity

variables instead of stellar masses M star
bo . We have taken advantage of the constancy of

the stellar-mass-to-light ratios of ellipticals in the SDSS (Kauffmann et al., 2003b,a) to

put the elliptical sample of Bernardi et al. (2003b,c) in the same projected variables we

can measure in our virtual ellipticals. We have found that the FPs shown by the two

ELO samples are consistent with that shown by the SDSS elliptical sample in the same

variables, with no further need for any relevant contribution from stellar population

effects to explain the observed tilt. These effects could, however, have contributed to

the scatter of the observed FP, as the IDPs have been found to be thinner than the

observed FP.

6.6.1.2 The Physical Processes Underlying Mass Homology Breaking and

their Observational Implications

One of the most important findings in this study is the homology breaking ELO samples

show in the relative content and, possibly although still not statistically clear, in the

relative distribution of the baryonic and the dark mass components. As explained in

Oñorbe et al. (2005, 2006), this has as a consequence the observed tilt of the Fundamen-

tal Plane relation relative to the virial one. Which are the physical processes underlying

this breaking of homology? According with our simulations, they lie in the systematic

decrease, with increasing ELO mass, of the relative amount of dissipation experienced

by the baryonic mass component along ELO stellar mass assembly (Domı́nguez-Tenreiro

et al., 2006; Oñorbe et al., 2006). This possibility, already suggested by Bender et al.

(1992); Guzman et al. (1993); Ciotti et al. (1996), was first addressed through numerical

methods by Bekki (1998). He studied elliptical formation through pre-prepared simu-

lations of dissipative mergers of disc galaxies, where the rapidity of the SF in mergers

is controlled by a free efficiency parameter CSF. He shows that the SF rate history of
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galaxies determines the differences in dissipative dynamics, so that to explain the lack of

homology in EGs he needs to assume that more luminous galaxies are formed by galaxy

mergers with a shorter timescale for gas transformation into stars. Recently, Kobayashi

(2005) and Robertson et al. (2006) have confirmed the importance of dissipation and

the timescale for SF to explain mass homology breaking in ellipticals.

6.6.1.3 The Physical Origin of the Tilt in a Cosmological Context

We now turn to discuss the physical origin of the trends given by the power laws

Mvir/M
star
bo = Avir(M

star
bo )βvir and rtot

e,h/r
star
e,bo = Ard(M star

bo )βrd . As explained in Chapter 2,

the simulations provide us with clues on the physical processes involved in elliptical

formation (see also Domı́nguez-Tenreiro et al., 2004, 2006). Our simulations show that

the physical origin of the trends above lie in the systematic decrease, with increasing

ELO mass, of the relative amount of dissipation experienced by the baryonic mass

component along ELO stellar mass assembly (Domı́nguez-Tenreiro et al., 2006; Oñorbe

et al., 2006). This possibility had been suggested by Bender et al. (1992); Guzman et al.

(1993); Ciotti et al. (1996). Bekki (1998) first addressed it numerically in the framework

of the merger hypothesis for elliptical formation through pre-prepared simulations of

dissipative mergers of disk galaxies, where the rapidity of the star formation in mergers

is controlled by a free efficiency parameter CSF. He shows that the star formation rate

history of galaxies determine the differences in dissipative dynamics, so that to explain

the slope of the FP he needs to assume that more luminous galaxies are formed by

galaxy mergers with a shorter timescale for gas transformation into stars. Recently,

Robertson et al. (2006) have confirmed these findings on the importance of dissipation

to explain the FP tilt.

In this thesis we go one step further and analyze the FP of virtual ellipticals formed

in a cosmological context, where individual galaxy-like objects naturally appear as an

output of the simulations. Our results essentially include previous ones and add im-

portant new information. First, our results on the role of dissipation to produce the

tilt of the FP essentially agree with those obtained through dissipative pre-prepared

mergers and observational results, but it is important to note that, moreover, more

massive objects produced in the simulations do have older means and narrower spreads

in their stellar age distributions than less massive ones (see details Domı́nguez-Tenreiro

et al., 2004); this naturally appears in the simulations and need not be considered as

an additional assumption.

6.6.2 Summary

We conclude that the simulations provide a unified scenario where most current observa-

tions on ellipticals can be interrelated. In particular, this scenario proofs the importance

of dark matter halos in relaxed virtual ellipticals, and suggests that real ellipticals must
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also have extended, massive dark matter halos. Also, this scenario explains the homol-

ogy breaking in the relative dark to bright mass content and distribution of ellipticals,

which have important implications to explain the physical origin of the Fundamental

Plane relation, indicating that the FP tilt is due dissipative dynamics. In fact, the ELO

samples have been found to show systematic trends with the mass scale in both, the

relative content and the relative distributions of the baryonic and the dark mass ELO

components (see however, discussion in Section 6.5.3 on this last contribution). These

trends cause a tilt of the virial plane in such a way that there is no further need of any

relevant contribution from stellar population effects to explain the observed tilt. The

scatter of the observed FP, however, probably requires a contribution from such stellar

effects. All these trends are due to a systematic decrease, with increasing ELO mass, of

the relative amount of dissipation experienced by the baryonic mass component along

ELO formation, a possibility that Bender et al. (1992); Guzman et al. (1993); Ciotti

et al. (1996) had suggested and in which we will deepen into the next Chapters.

Additionally, we have studied the Photometric Plane, another strong correlation

between structural parameters which could be an interesting alternative tool for the

study of elliptical galaxies at high redshifts instead of the Fundamental Plane that

requires a heavy amount of time for measuring velocity dispersions. We have found a

good agreement between our data and observations.

ELO stellar populations show age effects, that is, more massive objects produced

in the simulations do have older means and narrower spreads in their stellar age dis-

tributions than less massive ones this is equivalent to downsizing (Cowie et al., 1996;

Thomas et al., 2005) and naturally appears in the simulations, so that it need not be

considered as an additional assumption.

We have also shown that all these results do not depend significantly on the star

formation parameterization, cosmological values, resolution or box size. Concerning the

box size of our simulations we have arisen to the conclusion that simulations with a larger

box size are more realistic because they cover a wide range of possible environments

and histories for our virtual ellipticals. However this also leads to a much richer variety

of different physical processes and histories than in the smaller box simulations because

they cover a wide range of environment possibilities. Therefore, our samples with Lbox =

10 Mpc have a great advantage which is that we are able to isolate the different physical

processes which take part in the formation and evolution of elliptical galaxies. This

allows us to study the main processes involved in elliptical formation.

We will investigate in the following chapters all the fundamental relations presented

here at higher redshifts (Chapter 8) and the impact of these results concerning the

different elliptical formation and evolution scenarios (Chapter 9).



Chapter 7

Ellipticals at z = 0: The Rotation

versus Shape Relation1

7.1 Introduction

In this Chapter we continue the study of the properties of elliptical galaxies. We now

turn to the observed relationships between the rotation support and the shape of el-

liptical galaxies. We have already discussed the relevance of this interdependence in

understanding the origin and evolution of this type of galaxies (see Section 3.2.2). Here

we present a formal study of this relation using our samples of simulated ellipticals at

redshift zero.

In order to minimize possible bias in our samples, in this Chapter we extend our

analysis to all the objects that are well defined just at the ELO scale increasing the

number of elliptical-like objects in each sample: -STAR samples (see section 4.4 for

more details). ELOs in these samples show the same correlations as previous ones for

the stellar object scale, i.e., the Fundamental Plane, Photometric Plane and stellar age

properties. However they are embedded in a dark matter halo that it is not relaxed,

making the halo properties ill-defined. This happens because the halo is suffering a

merger at this scale. In these cases there can be some other significant stellar objects

around the main ELO. Therefore we consider that these ELOs are not relaxed (or in

equilibrium) at the halo scale. This is a problem in order to study, for example, the

origin of the Fundamental Plane, however for the analysis of this Chapter this is not an

important issue and in fact, we want to obtain a bigger and more representative sample

of elliptical galaxies. In general and for the sake of clarity, in this section we show

results for the EA-STAR-Z0 sample. Nevertheless, at the end of this Chapter we will

discuss all our conclusions for the different -STAR samples at z = 0 of our simulations

(see Table 4.3).

1Based on González-Garćıa, Oñorbe, Domı́nguez-Tenreiro, & Gómez-Flechoso (2009)
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This Chapter is organized as follows: In Section 7.2 we describe and discuss the

shape of the ELO samples. Section 7.3 is focused on the rotational support of simulated

ellipticals and the best parameters that describe it. Section 7.4 deals with the relation

between both properties. In Section 7.6 we present our conclusions.

7.2 The Shape of ELOs

We first study the 3D shape of the simulated ellipticals assuming that they can be

described by an ellipsoid of semiaxes a, b and c, with a > b > c. These parameters have

been obtained from the mass within the stellar effective radius, rstar
e,bo, and within the

stellar 90% mass radius, rstar
90,bo (see 4.5 for details on their calculation from the inertia

tensor). From these quantities we have defined several parameters that describe the 3D

shape at both radii. First, we have calculated the axis ratios, b/a, c/a and the triaxiality

parameter, T , introduced by de Zeeuw & Franx (1991)

T =
1− (b/a)2

1− (c/a)2
(7.1)

as a more complete descriptor of the 3D shape of the simulated elliptical. However as

the T parameter does not distinguishes between a triaxial object with c/a ∼ 0.9 (which

is close to be a sphere) and a more flattened one with c/a = 0.5, we have defined a new

shape parameter, S = s+ (1− T ), where

s =


0 if c/a < 0.9 & T > 0.7 (prolate)

1 if c/a < 0.9 & 0.3 ≤ T ≤ 0.7 (triaxial)

2 if c/a < 0.9 & T < 0.3 (oblate)

3 if c/a > 0.9 (sphere)

(7.2)

so S takes values ∈ (0, 1) for prolate spheroids, ∈ (1, 2) for triaxial spheroids, ∈ (2, 3)

for oblate objects and ∈ (3, 4) for sphere-like objects.

In Figure 7.1 we present the results for the axis ratios obtained within both radii

for the EA-STAR-Z0 sample. Also, to deepen into the shape distribution of simulated

ellipticals at redshift z = 0 in Figure 7.2 we present the histogram of the S parameter

for the EA-STAR-Z0, EB -STAR-Z0 and EF1-STAR-Z0 samples. We will discuss about

possible differences between these samples in Section 7.5.

The first conclusion that arises from these figures is that the shape of simulated

ellipticals clearly depends on the radius where we calculate it. This is not surprising

and was already notice in first calculations of the projected shape of ellipticals (Bender,

1988; Ryden et al., 2001). This is also found in our simulations, and as the observational

data, our results indicate that in general as we deepen into the inner parts of an object,

it tends to be rounder. So, statistically, just using smaller radius limits we obtain higher
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Figure 7.1: 3D axis ratios for the EA-STAR-Z0 sample calculated at different radii:
rstar

e,bo (left) and rstar
90,bo (right). Full red circles stand for ELOs with M star

bo > 1× 1011 M�
while empty red circles stand for ELOs with M star

bo ≤ 1× 1011 M�.

axis ratios.

Concerning the shape distribution of nearby ellipticals, recently Kimm & Yi (2007)

have calculated the intrinsic axis ratio distribution of nearby (0.05 ≤ z ≤ 0.06) early-

type galaxies from the SDSS. From a total 3922 sample they have obtained that around

∼ 45% are triaxial, ∼ 29% oblate and ∼ 30% prolate. Also they found that luminous

early-types are mostly triaxial(∼ 68%), whereas the less luminous sample has a larger

number of oblate types (∼ 38%) than the complete sample. A clear comparison of

our results with Kimm & Yi (2007) data is not straightforward because the authors

have to make several assumptions in order to do the deprojection and this technique

is highly model dependent. Moreover it is not clear what characteristic radii limit was

used. However our results are interesting in two ways. First, we have confirmed that

axis ratios are clearly greater than 0.2, one of the assumptions of these authors used

to build their models. Second, concerning statistics, we obtain ∼ 2(14)% spherical

objects, ∼ 54(34)% triaxial, ∼ 30(25)% oblate and ∼ 14(27)% prolate objects for the

rstar
90,bo (rstar

e,bo) radius. In this context, it is also interesting to point out that taking

into account the axis ratios seen in Figure 7.1, using the classical division between just

triaxial, prolate and oblate objects, all the sphere-like objects in our sample would be

classified as triaxial ones. Therefore our statistics seems to be in good agreement with

that obtained from the deprojection of the SDSS early-type galaxies. In this sense, it is

also worth noting that the shape distribution for a sample obtained from a simulation

with different star formation parameters (EB -STAR) show very small differences at the

effective radius, rstar
e,bo. At rstar

90,bo results are in agreement within the errors bars.
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Figure 7.2: 3D Shape histogram, S, for the EA-STAR-Z0 (red line), EB -STAR-Z0
(blue dashed line) and EF1-STAR-Z0 (orange dotted line) samples calculated using
Equation 7.2 at two different characteristic radii: rstar

e,bo (left) and rstar
90,bo (right).

Another important parameter we have measured is the 3D ellipticity, ε3D = 1− c/a.

This is the quantity that appears in the Equation 3.15, relating the amount of rotation

with the anisotropy of a virialized object (see Section 3.2). We have calculated it both

at the rstar
e,bo and the rstar

90,bo radii. Its observational counterpart is the projected ellipticity,

ε, which is the quantity used to determine the shape of real galaxies. We have measured

it using one hundred random projections, also for two radii, the projected equivalent

of the 3D cut-off radii, Rstar
e,bo, and Rstar

90,bo. See Section 4.5 for the details on how we

measure these quantities.

In Figure 7.3 we can see a remarkably good correlation between the 3D shape pa-

rameters and their observational counterparts. It is important to mention that we found

that the dispersion due to projection effects for the 2D quantities is high (up to ∼ 40%).

Concerning the relation between ε3D and other shape parameters, no tight correlation

with T is found. This just indicates that the values of the three axis of the ellipsoid are

not correlated and that for certain c/a we obtain some dispersion in the b/a axis ratio

(see Figure 7.1). Although obviously, c/a puts the lower limit to this relation.

Finally we have studied the correlation between the different shape parameters de-

scribed in this section S, T and ε3D and the stellar mass, M star
bo (Figure 7.4). No clear

trend has been found. Concerning observational results, the first ones suggested that

more massive objects were rounder (see Section 3.2). Recent work with the SDSS data

(Hao et al., 2006), also point towards this direction but with a very high dispersion.

When we plot the 3D ellipticity versus the stellar mass (see Figure 7.4) we obtain very

similar results as these authors, especially in the sense that for lower masses we obtain

a higher dispersion in the ellipticity values.



7.2 The Shape of ELOs 167

Figure 7.3: 3D shape parameters, ε3D, calculated at two different characteristic radii:
rstar

e,bo (left) and rstar
90,bo (right) versus their projected counterparts for the EA-STAR-Z0

sample. Full red circles stand for ELOs with M star
bo > 1 × 1011 M� while empty red

circles stand for ELOs with M star
bo ≤ 1× 1011 M�.

To sum up, concerning the 3D shape of simulated objects both scales, rstar
e,bo and rstar

90,bo,

can be used, both of them are convenient descriptors and correlate well between each

other. Concerning the 2D shape descriptor, current observations of elliptical galaxies

usually measure their ellipticity between 0.5 and 2 times the projected effective radius

(Bender et al., 1994; Cappellari et al., 2007). In consequence we will use ε(< Rstar
e,bo) as

the formal descriptor of the 2D shape of the simulated ellipticals and the one we would

use whenever we want to compare with real data.

Figure 7.4: 3D shape parameters, ε3D, calculated at two different characteristic radii:
rstar

e,bo (left) and rstar
90,bo (middle) versus the stellar mass for the EA-STAR-Z0 sample.

Right panel shows results for the SDSS data (Hao et al., 2006).
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7.3 The Rotation of ELOs

The phase-space information available in our simulations allows us to calculate the

amount of rotation in ELOs in several ways and using different descriptors. In fact,

there are several different options in the literature to account for the 3D rotation of

an object (Emsellem et al., 2007). Our method aims to two main objectives. First,

we want to compare with observations. For this purpose the best option is obtaining

Vmax/σ
star
los,0 which, as explained in Section 4.5.3, is the more often used parameter in real

data measurements (see however van der Marel & van Dokkum, 2007; Emsellem et al.,

2007, for new observational descriptors). Second, we want a robust descriptor of the real

3D amount of rotation for elliptical-like objects that can be also easily compared with

the 2D descriptor. For this purpose we choose the tangential stellar velocity in units of

the 3D dispersion, Vφ/σ
star
3 . Basic details on their calculation can be found in Section

3.2 and here we would just discuss the results and the different options and paths. One

of this subjects, as in the shape study, is how the amount of rotation depends on the

radius where it is measured or, in the case of Vmax, the length of the slit. Therefore,

as in the shape analysis, we have chosen rstar
e,bo and rstar

90,bo for the 3D studies and their

projected counterparts, Rstar
e,bo and Rstar

90,bo for the 2D.

Concerning the guest for a suitable 3D rotation descriptor, two possible candidates

are Vφ/σ
star
3 (see Section 4.5.3) and the specific angular momentum of each ELO, both

of them at the two characteristic radii (i.e. 4 possibilities). Note that the intrinsic

angular momentum is a cumulative quantity, while Vφ/σ
star
3 is measured at a given

radius. Our results show that the two intrinsic angular momenta correlate well with the

3D rotation descriptor calculated at the effective radius, Vφ/σ
star
3 (rstar

e,bo). On the other

hand, we found that Vφ/σ
star
3 (rstar

90,bo) do not show any strong trend with the intrinsic

angular momenta. This is not really surprising because it depends on the external layer

of the simulated object which takes longer to relax to any perturbation of the object (for

example, matter coming from a recent major merger) and it is very sensitive to different

events, as small satellite mergers or gas infall, which do not account for the global

properties of the object. We do not find this problem for the shape descriptors, nor the

intrinsic angular momenta, because contrary to Vφ/σ
star
3 , they are cumulative quantities.

For these reasons, the best 3D rotation descriptor to account for the global properties

of simulated ellipticals is Vφ/σ
star
3 (rstar

e,bo), while Vφ/σ
star
3 (rstar

90,bo) describes rather rotation

at the external layers.

Concerning the 2D descriptor, we have also measured Vmax choosing the maximum

length of the slit to be either Rstar
e,bo or Rstar

90,bo (see Section 4.5 for details on this calcu-

lation). Results can be appreciated in Figure 7.5 where we plot Vφ/σ
star
3 (rstar

e,bo) versus

Vmax/σ
star
los,0(Rstar

e,bo) and Vmax/σ
star
los,0(Rstar

90,bo) and we see for both limits we found a good

correlation between the 2D and the 3D rotation parameter Vφ/σ
star
3 (rstar

e,bo). We also

found some interesting facts. First of all, the two projected quantities show a good cor-
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relation between each other and secondly, for the same ELO, Vmax shows a higher value

for a larger length of the slit. The dependence of Vmax on the slit length was already

noticed in real ellipticals by Bender (1988) who pointed out that in order to obtain a

good estimation of this parameter one should be able to measure, at least, up to the

projected effective radius of the galaxies (Rstar
e,bo). Taking into account Figure 5.21 the

correct way of doing it would be obtaining the profiles, at least, up to a radius where

they settle down. In this sense, Rstar
90,bo, seems to be a more suitable option than Rstar

e,bo.

Note, however, as it happens with the shape, current observations reach between 0.5

and 2 times the projected effective radius (Bender et al., 1994; Cappellari et al., 2007).

So we will use both of them. Two comments are in order: i) the amount of rotation

measured at Rstar
e,bo is a lower limit of that measured at Rstar

90,bo (see Figure 7.5); ii) Both

Vmax/σ
star
los,0 quantities have to be considered as lower limits of the intrinsic rotational

support of the galaxy, just due to projection effects (see discussion on this topic in

Rothberg & Joseph, 2006). It is also important to remark that, the Vmax parameter

presents a high dispersion due to projection effects (∼ 35%) for both slit lengths.

Figure 7.5: EA-STAR-Z0 3D rotational support parameter, Vφ/σ
star
3 , calculated at the

effective radius, rstar
e,bo, versus its projected counterparts, Vmax/σ

star
los,0, calculated at two

different characteristic radii: Rstar
e,bo (left) and Rstar

90,bo (right).

The only exceptions to all these trends are some small objects for which we obtain

Vmax(Rstar
e,bo) = 0. These results are related with the resolution limits. In these cases,

the slit is too small to include enough particles to have a proper estimation of Vmax up

to Rstar
e,bo.

We have also studied the relation between the amount of rotation of each simulated

elliptical with their stellar mass. From Figure 7.6 we can see that, as the stellar mass

increases, the mean and dispersion of the rotational support decreases. This is in good
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agreement with recent observational results (Rothberg & Joseph, 2006; Emsellem et al.,

2007) and seems to follow roughly the prediction of Davies et al. (1983) that luminosity

(and therefore mass) increases as objects have a lower rotational support.

Figure 7.6: 3D rotational support parameters, Vφ/σ
star
3 , calculated at two different

characteristic radii: rstar
e,bo (left) and rstar

90,bo (right) versus the stellar mass for the EA-
STAR-Z0 sample.

7.4 Rotation vs. Shape: 3D and 2D Results

Once we have robust descriptors of the shape and the rotational support of our simu-

lated ellipticals, both for 3D and 2D analyzes, we have studied their possible relation.

Figure 7.7 shows the classical diagram introduced by Davies et al. (1983) between the

two observational parameters for our simulated ellipticals. In this Figure we also plot

some recent observational results for elliptical galaxies. We find a very good agreement

between observational data (Bender et al., 1994; Cappellari et al., 2007) and our simu-

lated ellipticals. On one hand, fast rotators (Vmax/σ
star
los,0 > 0.2) show a good correlation

with the shape parameter, ε. On the other hand, slow rotators (Vmax/σ
star
los,0 < 0.2)

display misalignment between the structural and kinematical axes. These results are

consistent independently of the length of the slit used to obtain Vmax, Rstar
e,bo or Rstar

90,bo,

however we obtain a better comparison with the last one. In Figure 7.8 we present the

3D equivalent plot for these quantities and found that the relation observed between

shape and kinematics not only holds for the 3D parameters data but moreover it is

clearer.

In order to study the shape and kinematics misalignment, we plot in Figure 7.9

(upper panels) the same diagrams introduced in previous Figures but in this case show-

ing the 3D shape parameter, S, for each object. Results are really interesting because
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Figure 7.7: The projected shape parameter at Rstar
e,bo versus the projected rotational

support parameter calculated at two different characteristic radii: Rstar
e,bo (left) and Rstar

90,bo

(right) for the EA-STAR-Z0 sample. Green triangles stand for Cappellari et al. (2007)
data for ellipticals. Green squares stand for Bender et al. (1994) data for ellipticals.
Black solid line indicates the locus for oblate rotators (Binney, 1978).

they point towards a possible clear segregation of elliptical galaxies in the 2D classical

diagram depending on the 3D shape. This is not a surprise and it is in good agreement

with the theoretical prediction made in Section 3.2 based on the virial theorem approx-

imation. First, we can see that oblate objects show a clear correlation between shape

and rotation which is exactly what we expect from our approximation. Second, prolate

objects tend be in the lower part of the diagram. As expected, triaxial objects seem

to be between the two previous types (see Binney, 1978). This result is found not only

for the 3D values of shape and rotation but also for the mean projected values (lower

panels of Figure 7.9).
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Figure 7.8: The 3D rotational support parameter at rstar
e,bo versus the 3D shape parameter,

ε3D, calculated at two different characteristic radii: rstar
e,bo (left) and rstar

90,bo (right) for the
EA-STAR-Z0 sample.
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Figure 7.9: 3D (up) and 2D (down) rotational support (Vφ/σ
star
3 and Vmax/σ

star
los,0) versus

shape descriptors (ε3D and ε) for the EA-STAR-Z0 sample. Color and shapes of this
figure stand for the 3D shape calculated using Equation 7.2 for the characteristic radius
that corresponds in each case: Yellow pentagons for spheres, blue squares for oblate
objects, red circles for triaxial objects and green triangles for oblate objects. Black
solid line indicates the locus for oblate rotators (Binney, 1978).
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7.5 Consistency Checks

Concerning resolution Figure 7.10 shows the results of two consistency checks performed

using the 6705 and 7705 simulations (ED sample, see Section 4.2 for details). Figure 7.10

(left panel) shows the star-formation history of two objects, the most and least massive

ELOs in these simulations (see Section 9.2 for more details on the star formation histories

of our ELOs). The black dotted line and the solid green line depict the results of the

simulations with 2×1283 and 2×643 particles, respectively. We found small differences,

especially at early times, although the two systems display general similar behavior, and

at high cosmic times (low redshift) no significant differences are evident. A similar test

was completed by Naab et al. (2007) and, although the numerical approaches differ, it

is reassuring to also find convergence in this resolution test.

Figure 7.10 (right panel) presents comparative results of the same objects at z = 0 in

the two simulations where we computed the observables introduced above on shape and

kinematics. The systems appear to be stable and agreement between the simulations

results is good, although one object does exhibit a significant difference. This system is

not the least massive in these simulations and the difference is due to the peculiar way

in which the Vφ/σ
star
3 parameter is measured, such that particles at different radii are

considered.

7102 Particles

47815 Particles

1011 Particles

8427 particles

Figure 7.10: Left: Star formation history of the most (top) and least (bottom) massive
ELOs for the ED test simulations with 2 × 643 particles (7705, solid green line) and
2 × 1283 particles (6705, dotted black line). Right, comparison of the kinematic (top)
and shape (bottom) observables. For details, see text.

We now comment on the box size and star formation systematics. First, the good

agreement obtained between 2D and 3D parameters and their trends with mass for

the EA-STAR-Z0 ELOs also hold for samples obtained from simulations with different

box sizes and/or star formation parameters. In Figure 7.2 we have seen the shape
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distribution for the EB -STAR-Z0 and EF1-STAR-Z0 samples. Results show a good

agreement within the error bars. Figure 7.11 shows 3D and 2D rotation versus shape

diagrams for EB -STAR-Z0, EF1-STAR-Z0 and EF3-STAR-Z0 samples, using the 3D

global shape parameter, S, to determine the color and shape for each object. Segregation

in the diagram depending on this parameter is also found for these samples.

Figure 7.11: 3D (up) and 2D (down) rotational support versus projected shape descrip-
tors for the EB -STAR-Z0 (left), EF1-STAR-Z0 (middle) and EF3-STAR-Z0 (right)
samples. Color and shapes of this figure stand for the 3D shape parameter, S, cal-
culated using Equation 7.2 for the characteristic radius that corresponds in each case:
Yellow pentagons for spheres, blue squares for oblate objects, red circles for triaxial
objects and green triangles for prolate objects.

7.6 Conclusions

To conclude, by studying the classical diagram introduced by Davies et al. (1983), we

have shown that the shape distribution of our simulated galaxies and their kinematics

are closely related and in good agreement with the observational data. Current ob-

servational results on this diagram still lack of reliable statistics when comparing with

other known Fundamental Relations, mostly due to the high cost of measuring Vmax.

The largest homogeneous set of long-slit Vmax/σ
star
los,0 and ellipticity values is currently

constituted by the 94 measurements for elliptical galaxies by R. Bender (see Cappellari

et al., 2007). In this context, we have been able to deepen into this relation through

our simulations and we have reached several interesting new ideas on this topic. First,
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this classical diagram holds when we use the 3D parameter counterparts. The clear

segregation of elliptical galaxies in the ε vs. Vmax/σ
star
los,0 diagram depending on the 3D

shape is a very interesting result, expected from theoretical considerations (see Section

3.2), but never confirmed in self-consistent cosmological simulations. It could explain

some observational results for merger remnants (Rothberg & Joseph, 2006) that showed

variations among expected correlations between shape and rotation. We think that our

conclusions can be very useful to both, observers and theoreticians, in order to constrain

and use different structural and kinematical models to describe elliptical galaxies. For

example, concerning the shape distribution, we have put some clear limits on the intrin-

sic axis ratio values, useful for the deprojection techniques applied in observed galaxies

(Kimm & Yi, 2007). Also the confirmation that, just because projection effects, the

Vmax/σ
star
los,0 ratio measured in real ellipticals must be considered as a lower limit to the

rotational support is an important issue in order to analyze observational data. The

study of these projection effects has allowed us to show that both parameters, ε and

Vmax, present a high dispersion from the mean, 40% and 35% respectively, taking one

hundred random projections (see Section 4.5.3). This is much higher than any other

quantities studied in this thesis, as Rstar
e,bo or σstar

los,0, that present around 5% dispersion

due to projection effects.

We have confirmed that more massive ELOs show a lower dispersion in rotational

support and shape values than less massive ones, pointing to rounder shapes and less ro-

tational support for the first ones. Finally we have seen that the 3D shape of a simulated

elliptical could be constrained by the position that it occupies in the classical diagram

that relates these two quantities. All these conclusions can be also corroborated in the

2D projected parameters, observationally available, that quantify these characteristics

ε and Vmax/σ
star
los,0. Moreover we have seen that the 3D shape of an elliptical could be

constrained by the position that it occupies in the classical diagram that relates these

two quantities.

In fact, ELOs have shown a very good agreement with a different set of observations

at z = 0. In following chapters we will study how they formed and their structure and

kinematics at higher redshifts. In addition, we will discuss deeply the impact of all these

results concerning the different elliptical formation and evolution scenarios.



Chapter 8

Evolution of Ellipticals out to

z=1.5 1

8.1 Introduction

Once the simulated elliptical population at redshift z = 0 has been analyzed in detail, the

next logical step is to extend this work to the population samples at higher redshifts:

z = 0.5, z = 1 and z = 1.5. We have searched for ELOs in all the simulations and

analyzed them at these three different redshifts. The process of building all these

samples is explained in Section 4.4. Nevertheless, here we remember the reader that

higher redshift samples have been built following the same criteria as the z = 0 samples.

In addition, we have calculated all the different parameters studied in the z = 0 samples

following the same methodology. We point to Section 4.5 for a complete description of

the analysis method. The exact values of these parameters for the different ELO samples

can be found in Appendix D.

This Chapter focuses on the study of possible indications of evolution for the different

virtual elliptical samples. In order to obtain results easily to compare we have focused

our work in studying the tightest correlations found at redshift z = 0. First Section is

related with the most important of all these relations, the Fundamental Plane. After-

wards, in Section 8.3, we deepen into the Photometric Plane relation, closely related

with the first one. In Section 8.4 we analyze other interesting structural and kinematical

parameters discussed in the previous Chapter and their correlations. Finally Section 8.5

describes how the shape and rotational support relation behaves at different redshifts.

Our conclusions are summarized and discussed in Section 8.6.

1Based on Domı́nguez-Tenreiro et al. (2006); Oñorbe et al. (2007, 2008); González-Garćıa et al.
(2009)
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8.2 The Fundamental Plane

In our study of virtual ellipticals at z = 0 we found that they populate a flattened

ellipsoid close to a two-dimensional plane in the intrinsic (i.e., three-dimensional) char-

acteristic mass (M star
bo ), radius (rstar

e,bo) and velocity dispersion (σstar
3,bo) space (the Intrinsic

Dynamical Plane, IDP, see Section 6.2.2). Therefore to characterize and study possi-

ble evolution effects of the structural and dynamical properties of ELOs, we describe

their three dimensional distributions of mass and velocity through these three intrinsic

parameters the stellar mass at the baryonic object scale, M star
bo , the stellar half-mass

radius at the same scale, rstar
e,bo and the mean square velocity for stars, σstar

3,bo, whose ob-

servational projected counterparts (the luminosity L, effective projected size Rlight
e , and

stellar central line of sight velocity dispersion, σ0) enter the definition of the observed

FP. We use firstly three dimensional variables rather than projected ones to avoid pro-

jection effects. As well as in our study at z = 0 we have used ELOs that are well defined

both at the stellar and halo scales. See Section 4.4.1 for the details about how we built

these samples.

To measure the structural and dynamical evolution of ELOs, we carry out a principal

component analysis of the EA, EB (different star formation) parameters and EF3 (larger

box size) samples at redshifts z = 0.5, z = 1 and z = 1.5 (defined in Section 4.4) in

the three dimension variables E ≡ logM star
bo , r ≡ log rstar

e,bo and v ≡ log σstar
3,bo through

their 3 × 3 correlation matrix C. In Section 6.2.2 we presented an introduction on the

PCA method and the results of this study for the different samples at z = 0. We

have found that one of the eigenvalues of C is, for the three ELO samples analyzed,

considerably smaller than the others (as we found for the EA-Z0 sample), so that ELOs

populate at any z a flattened ellipsoid close to a two-dimensional plane in the (E, r, v)

space; the observed FP is the observational manifestation of this dynamical plane. The

eigenvectors of C indicate that the projection

E − Ẽz = α3D
z (r − r̃z) + γ3D

z (v − ṽz), (8.1)

where Ẽz, r̃z and ṽz are the mean values of the E, r and v variables at redshift z, shows

the plane viewed edge-on.

Table 8.1 gives the planes Eq. (8.1) for the EA, EB and EF3 samples at different

zs, as well as their corresponding thicknesses σErv(z), the distances d(z) of the sample

center of mass at z (i.e., the [Ẽz, r̃z, ṽz] point) to the plane Eq. (8.1) at z = 0, and the

fraction of ELOs in the z = 0.5, z = 1 and z = 1.5 samples whose distance to the z = 0

sample is larger than 2σErv(z = 0). In order to compare the EB and EF3 samples with

EA we also show the distances d(z) of the sample center of mass at z (i.e., the [Ẽz, r̃z, ṽz]

point) to the EA-Z0 plane and the fraction of ELOs of these samples whose distance to

the EA-Z0 sample is larger than 2σEA−Z0
Erv .
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We see that the sample averages Ẽz, r̃z and ṽz grow as z decreases, but in any case for

the EA and EF3 samples | d(z) |< σErv(z = 0), so that they move roughly on the z = 0

plane within its rms scatter. We have also plot this space of parameters in Figure 8.1 for

the EA-Z0 sample. EB present very similar result but for the z = 1.5 sample. However,

we also checked that all ELOs of these samples are within 3 times the σErv(z = 0).

These results indicate that ELO evolution preserves their dynamical plane and strongly

suggest that the evolution shown by the Fundamental Plane of real ellipticals must

be explained, basically, as due to the changes of luminosity of their passively evolving

stellar populations, corroborating other observational findings on elliptical homogeneity

(see section 3.3.1). In regard to the comparison between the EB and EF3 samples with

the EA-Z0 intrinsic dynamical plane (columns 11 and 12 of Table 8.1), mean values of

EB samples are displaced by a constant distance from the EA-Z0 plane. These results

consolidate the idea, already discussed in Section 6.2, that EB dynamical plane is the

same one as the EA one but with a different zero point. Results on the EF3 samples

show a very good agreement with the EA-Z0 plane.

Figure 8.1: Evolution of the structural and kinematical fundamental parameters: M star
bo ,

rstar
e,bo, σstar

3,bo for EA runs at different redshifts.

We have also searched for the observational manifestation of this intrinsic relation

in all these samples. As in Chapter 6 we have used the projected parameters M star
cyl,bo,
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Rstar
e,bo, σstar

los,0 to build the Dynamical Plane and compare with observational data. We

have moved these variables to the κD system (see Equations 6.5-6.7) so that we can plot

easily the edge-on and face-on projections of this plane. As Figure 8.2 shows, we have

found that EA ELOs at all these redshifts also lay on a fundamental plane with almost

the same tilt as ELOs in z = 0. We have obtained the slopes, through direct fits, of

the κD
3 = M1κ

D
1 +M0 relation that reflects the edge-on projection of the Fundamental

Plane. Results of these fits can be found in Table 8.2 and confirm the lack of evolution

of the tilt of the Dynamical Plane. We also show the kappa space projections for the

EB and EF3 samples in Figure 8.3. M1 coefficients for these samples can be found in

Tables 8.3 and Tables 8.4, respectively.

Figure 8.2: The Dynamical Plane viewed edge-on (top) and face-on (bottom) for EA-
Z0 (red), EA-Z0.5 (green), EA-Z1 (blue) and EA-Z1.5 (cyan) in the kappa space. We
also draw the respective concentration ellipses (with their major and minor axes) for
the SDSS early-type galaxies sample from Bernardi et al. (2003c) in the z -band and
r -band. See text for more details.

To deepen into the tilt issue and the origin of the Fundamental Plane, we have

made the same statistical analysis as for the z = 0 samples. That is, we have studied

the fundamental structure and kinematical parameters that characterize our virtual

ellipticals at different scales: the halo scale, the baryonic object scale and the projected

baryonic scale, verifying that higher redshift samples also satisfy the virial theorem
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Figure 8.3: The Dynamical Plane viewed edge-on (top) and face-on (bottom) at different
redshifts (z = 0 red; z = 0.5 green; z = 1 blue; z = 1.5 cyan) for EB (left) and EF3
(right) in the kappa space. We also draw the respective concentration ellipses (with
their major and minor axes) for the SDSS early-type galaxies sample from Bernardi
et al. (2003c) in the z -band and r -band. See text for more details.

relation and searching for the origin of the tilt of this relation at the projected baryonic

scale (see more details in Section 6.2.4). Results of the log-log fits are in Tables 8.2,

8.3 and 8.4 for the EA, EB and EF3 samples. It is interesting to point out that higher

redshifts samples (apart of having a lower number of virtual ellipticals) cover a bit lower

mass range. In spite of these drawbacks the statistical analysis confirms robustly that

Mvir/M
star
bo leads to a βvir 6= 0, thus contributing to the tilt at any z (see also Figure 8.6).

The other factor involved in explaining the origin of tilt at z = 0 is the crd = rvir/r
star
e,bo

relation. In this case, dispersion is too high at higher redshifts to allow us to reach a

firmly statement however they do not discard our previous conclusions.

Finally we want to discuss some indications of mild evolution observed in our sta-

tistical analyzes (Tables 8.2, 8.3 and 8.4) and Figure 8.1, specially for the most massive

objects in our samples. These trends for the massive galaxies point to a decrease of

the effective radius and an increase of the velocity dispersion as redshift increases at a

fixed mass. Both changes compensate one to each other so we do not see any changes

in the edge-on view of the Fundamental Plane. This result is in agreement with the

conclusions of Ciotti et al. (2007) and Robertson et al. (2006); Hopkins et al. (2008b,a).

These authors showed, using an analytical approach and by simulating galaxy mergers

respectively, the great importance of dissipation in the evolution of the fundamental

scale relations. Recent observational results have shown a very strong evolution of the

effective radius and velocity dispersion in this direction for the massive ellipticals (Tru-
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Parameter EA-Z0 EA-Z0.5 EA-Z1 EA-Z1.5

M1 0.238 ± 0.039 0.191 ± 0.086 0.226 ± 0.077 0.235 ± 0.177
βvir 0.221 ± 0.083 0.355 ± 0.104 0.237 ± 0.193 0.398 ± 0.212
βM -0.162 ± 0.140 0.129 ± 0.214 -0.048 ± 0.298 0.288 ± 0.415

βf 0.048 ± 0.040 0.030 ± 0.061 0.011 ± 0.099 -0.032 ± 0.089
βvd 0.000 ± 0.037 -0.046 ± 0.060 -0.139 ± 0.097 -0.074 ± 0.091
βvpc 0.012 ± 0.033 0.102 ±0.050 0.038 ± 0.075 0.086 ± 0.159
βrd -0.231 ± 0.146 0.018± 0.198 0.035 ± 0.282 0.308 ± 0.398
βrp 0.011 ± 0.012 0.029 ± 0.020 0.014 ± 0.016 0.009 ± 0.044

Table 8.2: Slopes for linear fits at different redshifts for EA samples. Column 2: the
slopes, for EA-Z0 sample, of the κD

3 = M1κ
D
1 + M0 relation (direct fits); the slopes of

the Mvir/M
star
bo and ci ∝ (M star

bo )βi scaling relations for the EA-Z0 sample, calculated
in log− log plots through direct fits. Errors stand for the respective 95% confidence
intervals. Column 3, 4 and 5: same as columns 2 for EA-Z0.5, EA-Z1 and EA-Z1.5
samples respectively.

jillo et al., 2007; Buitrago et al., 2008; van der Wel et al., 2008; Cenarro & Trujillo,

2009) raising a considerable interest for this issue in all the astrophysical community.

Although still not clear, the interpretation of these trends could be linked with the

amount of dissipation that each ELO has suffered along its mass assembly. Mergers

that do not involve gas (also called dry mergers) will produce remnants with larger

effective radius and lower velocity dispersion than those mergers which do involve it

(wet). Available observations seem to indicate that mergers do happen in the life of

elliptical galaxies, with wet mergers dominating at high redshift and dry merging mainly

affecting massive elliptical galaxies at z < 1.5 (e.g., see Khochfar & Burkert, 2003; Bell

et al., 2004, 2006; van Dokkum, 2005; Conselice, 2006; Faber et al., 2007). Therefore

for a galaxy with a fixed mass, its effective radius will be higher as the assembly of its

mass occurs at lower redshift because it has involved less dissipation.

We can also see this effect in Figures 8.2 and 8.3. Some mild evolution can be seen in

the κD1 vs κD2 projection, while the edge-on view (κD1 vs κD3 ) does not show significant

changes. In general, ELOs at lower redshifts tend to have lower values of κD2 for a

specific value of κD1 than higher redshift ones, specially as we go to higher values of

κD1 . In this sense, the position of a simulated elliptical in this plot is linked with the

amount of dissipation that it has suffered along it mass assembly. We will deepen into

this picture in Section 9.2 of the next Chapter.
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Parameter EB -Z0 EB -Z0.5 EB -Z1 EB -Z1.5

M1 0.277 ± 0.060 0.237 ± 0.086 0.288 ± 0.091 0.198 ± 0.124
βvir 0.290 ± 0.193 0.293 ± 0.153 0.313 ± 0.288 0.500 ± 0.203
βM -0.167 ± 0.288 -0.095 ± 0.300 -0.104 ± 0.427 0.307 ± 0.254

βf -0.007 ± 0.072 -0.003 ± 0.044 -0.076 ± 0.110 -0.089 ± 0.073
βvd 0.000 ± 0.113 -0.067 ± 0.102 0.053 ± 0.111 -0.010 ± 0.091
βvpc 0.069 ± 0.109 0.047 ± 0.081 -0.159 ± 0.106 0.021 ± 0.136
βrd -0.247 ± 0.266 0.025 ± 0.277 0.029 ± 0.398 0.413 ± 0.279
βrp 0.026 ± 0.021 -0.001 ± 0.035 0.062 ± 0.047 -0.034 ± 0.028

Table 8.3: Slopes for linear fits at different redshifts for EB samples. Column 2: the
slopes, for EB -Z0 sample, of the κD

3 = M1κ
D
1 + M0 relation (direct fits); the slopes of

the Mvir/M
star
bo and ci ∝ (M star

bo )βi scaling relations for the EB -Z0 sample, calculated
in log− log plots through direct fits. Errors stand for the respective 95% confidence
intervals. Column 3, 4 and 5: same as columns 2 for EB -Z0.5, EB -Z1 and EB -Z1.5
samples respectively.

Parameter EF3-Z0 EF3-Z1

M1 0.193 ± 0.111 0.184 ± 0.156
βvir 0.345 ± 0.166 0.533 ± 0.544
βM 0.092 ± 0.249 0.317 ± 0.488

βf 0.056 ± 0.060 0.008 ± 0.117
βvd -0.035 ± 0.072 0.038 ± 0.158
βvpc 0.086 ± 0.107 -0.020 ± 0.281
βrd -0.045 ± 0.232 0.270 ± 0.408
βrp 0.026 ± 0.022 0.022 ± 0.056

Table 8.4: Slopes for linear fits at different redshifts for EF3 samples. Column 2: the
slopes, for EF3-Z0 sample, of the κD

3 = M1κ
D
1 +M0 relation (direct fits); the slopes of

the Mvir/M
star
bo and ci ∝ (M star

bo )βi scaling relations for the EF3-Z0 sample, calculated
in log− log plots through direct fits. Errors stand for the respective 95% confidence
intervals. Column 3: same as column 2 for EF3-Z1.
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8.3 The Photometric Plane Evolution

Following the analysis of structural and kinematical fundamental parameters, we want to

deepen into one that has earned a lot of interest in the last years, the shape parameter,

n. We want to study the evolution of the different correlations, as the Photometric

Plane, that we found at z = 0 in which this parameter is involved (see Section 6.3).

Therefore, firstly we have analyzed how suitable the Sérsic law is to describe the stellar

mass distribution of virtual ellipticals at higher redshifts. To make a proper comparison

between them a special attention in the fitting method is needed (see Section 4.5).

Specifically the outer boundary limit for the fit has proved to be a very important

parameter. For this reason we have decided to use the same criterion for all samples. We

have used the same projected stellar mass density limit 6.32×1012M�/Mpc2 used at z =

0 which was obtained from an observational resolution limit in blue band µB = 27 mag×
arcsec−2. Of course, at these redshifts this mass density limit translates into unavailable

values of observational resolution threshold. However this is the same procedure used in

recent studies that test the evolution of different fundamental parameters with redshift

(see for example Trujillo et al., 2007; van der Wel et al., 2008), but for a higher resolution

limit.

We have found that the projected mass density profiles of ELOs at redshifts z = 0.5,

z = 1 and z = 1.5 can also be well fitted by a Sérsic law with similar χ2 values. In

Figure 8.4 we plot the mean shape parameter n versus the mean projected stellar half-

mass radius Rstar
e,bo and l.o.s. velocity dispersion σstar

los,0. In general, we can see that as we

go to higher redshifts our ELO samples have lower values of n and that this parameter

shows a higher dispersion for ELOs with a smaller Rstar
e,bo (and therefore less massive).

It is important to remark the good correlation between n and σstar
los,0 parameters at any

redshift. We have carried out a direct fit of the form: log(n) = β log(xi) + γ for these

parameters. The slopes of these fits and their respective 95% confidence intervals are

given in Table 8.5. First conclusion from these results is that there can be a mild

evolution of these parameters in the samples. In order to clarify this issue we have

carried out same fits for the projected stellar mass, M star
cyl,bo along redshift. Results can

be found in Table 8.5. From these results we can conclude that the possible evolution

points out to more concentrated ELOs for a fixed mass as we go to higher redshifts.

This is in good agreement with the mild evolution discussed in previous Section.

Additionally, we have analyzed if a similar relation to the Photometric Plane exists

in our ELO samples involving the effective radius, the stellar mass and the Sérsic index.

We define it as the Structural Photometric Plane (SPhoP):

logRstar
e,bo = A log n+B logM star

cyl,bo + C. (8.2)

Orthogonal least square fits of Equation 8.2 for the EA and EF3-STAR samples at
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EA-Z0 EA-Z0.5 EA-Z1 EA-Z1.5

n ∝ (Rstar
e,bo)β 0.388 ± 0.134 0.462 ± 0.246 0.540 ± 0.319 0.361 ± 0.521

n ∝ (σstar
los,0)β 0.823 ± 0.106 0.682 ± 0.146 0.582 ± 0.182 0.377 ± 0.392

n ∝ (M star
cyl,bo)β 0.330 ± 0.114 0.344 ± 0.159 0.454 ± 0.155 0.556 ± 0.285

Table 8.5: Slopes from direct fits and their respective 95% confidence intervals of the
shape parameter n and other Fundamental parameters up to z = 1.5.

Figure 8.4: Shape parameter, n, versus different structural and kinematical Fundamen-
tal parameters since z < 1.5. Error bars account for projection effects.

different redshifts are shown in Table 8.6. EA-Z0 sample gives AEA
Z0 = −0.30186;

BEA
Z0 = 0.87653; CEA

Z0 = −9.86211 σEAnRM,Z0 = 0.0556. In Figure 8.5 we plot the edge-on

projection of this plane (EA-Z0) for all the EA ELO samples at different redshifts. From

these results we have confirmed that the logarithms of n, Rstar
e,bo and M star

cyl,bo populate a

flattened ellipsoid close to a two-dimensional plane at any redshift up to z = 1.5. The

deviation between these planes as we go to higher redshifts could be explained by a

mild evolution of the Rstar
e,bo−M star

cyl,bo relation already mentioned in the previous section.

Table 8.6 also presents the orthogonal least square fits of the SPhoP for EF1 and EF3

samples. Although with slightly different slopes, we found that ELOs of these samples

lie in a SPhoP at all redshifts.

Finally, what is clear is that the Structural Photometric Plane puts a limit on the

values of the shape parameter, radius and mass at any redshift. Present results show

that the Photometric Plane could be an interesting alternative tool for the study of

elliptical galaxies at least up to z ∼ 1.5 instead of the Fundamental Plane, that requires
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a heavy amount of time for measuring velocity dispersions.

Figure 8.5: The Structural Photometric Plane for the EA sample at different redshifts.
Error bars account for projection effects.
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8.4 Other Structural and Kinematical Parameters

In this section we show some important results concerning the evolution of different

relations between structural and kinematical parameters studied in Chapters 5 and 6.

In the upper left panel of Figure 8.6 we plot, for the EA samples at z = 0, z = 0.5, z = 1

and z = 1.5, the slopes obtained from a power law fit of the total mass density profiles

(ρ(r) ∝ r−γ , see Section 5.2.5 for more details on the method). We do not find any

evolution trend for these slopes, confirming that all the mass components combine to

make almost an isothermal profile at any redshift. Moreover, in the upper right panel of

Figure 8.6 we present the ratio between the total virial mass, Mvir, and the stellar mass,

M star
bo for the same ELO samples. The dependence of this ratio with the stellar mass is

one of the main factors that explains the tilt of the Fundamental Plane in ELO samples

(see Sections 6.2 and 8.2). Slopes from log-log direct fits for this relation can be found

in Tables 8.2, 8.3 and 8.4 (βvir parameter) for EA, EB and EF3 samples respectively.

Although we obtain a possible decrease of the slopes as we go to lower redshifts, the

statistical errors (95% confidence level) still allow the non evolution possibility. Lower

left panel of Figure 8.6 shows another interesting result regarding the structure of ELOs

along redshift. In this plot we can see the Mdark
cyl /M tot

cyl (≤ Rstar
e,bo) ratios introduced in

Section 5.2.4 for the EA samples at higher redshifts. We observe a small trend, especially

for more massive ELOs, pointing towards an increase of the fraction of dark-to-total

mass at the effective radius as we go to lower redshifts. This result indicates that for a

fixed stellar mass, the stellar component at the ELO scale is less concentrated as we move

to lower redshifts (see previous results in Section 8.2 and discussion in 8.6). Finally, the

lower right panel confirms the extremely good correlation at any redshift between the

virial mass, Mvir, and the central stellar line-of-sight velocity dispersion, σstar
los,0. However

it is important to remark that the dispersion in this correlation increases if we include

ELOs which are not really isolated up to the virial scale, i.e., they are suffering a merger

at this scale and still have not reached an equilibrium state.
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Figure 8.6: Structural and kinematical parameters evolution since z < 1.5 for the EA
sample. Error bars account for projection effects. See text for details.
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8.5 The Rotation versus Shape Diagram

In this section we continue with the analysis started in Chapter 7 of the relation between

the shape and the rotational support of elliptical galaxies at z = 0 and study the

evolution of this relation up to z = 1.5 for our different samples. We will show that

all of them share some interesting general trends. In order to have better statistics

we present in next section the results of a total sample formed by joining EA-STAR,

EF1-STAR and EF2-STAR samples (see Section 4.4). A proper description on how the

different parameters studied in this section are calculated can be found in Section 4.5.

8.5.1 Shape and Kinematics of Elliptical Galaxies: Evolution Due to

Merging at z<1.5
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8.5.1.1 Consistency Checks

In this Section we present results from the different samples studied in this work regard-

ing the evolution of shape and rotational support of ELO samples. Figure 8.7 present

the evolution of the Shape parameter, S, inside the radius enclosing 90% of the stel-

lar mass, rstar
90,bo, for EA-STAR, EB -STAR, EF1-STAR and EF3-STAR samples. All

these samples show the same general trends pointed out in the previous section. For

all simulations, the fraction of prolate objects decreases with decreasing redshift, and

at all redshifts there is a small number of perfect spheres. The number of triaxial and

oblate objects also increases with decreasing redshift. Same conclusions arise if we use

the Shape parameter calculated at rstar
e,bo. Figure 8.8 illustrates the rotational support of

the ELOs for EA-STAR, EB -STAR, EF1-STAR and EF3-STAR samples. The general

trend discussed in previous section towards the increase of the number of systems with

a lower rotational support as we go to lower redshifts is confirmed for all these samples.
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Figure 8.7: 3D Shape histogram, S, of the EA-STAR (upper left), EB -STAR (upper
right), EF1-STAR (lower left) and EF3-STAR (lower right) samples at different red-
shifts calculated for the rstar

90,bo using Equation 7.2. The histograms are normalized to
their total number at each redshift, and the error bars represent the Poissonian noise.
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Figure 8.8: 3D Rotational support histogram, Vφ/σ
star
3 , of the EA-STAR (upper left),

EB -STAR (upper right), EF1-STAR (lower left) and EF3-STAR (lower right) samples
at different redshifts calculated for the effective radius rstar

e,bo. The histograms are normal-
ized to their total number at each redshift, and the error bars represent the Poissonian
noise.
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8.6 Conclusions

In this Chapter we have studied up to z = 1.5 the different fundamental relations

presented in previous Chapters at z = 0: The Fundamental Plane, The Photometric

Plane and the relation between shape and rotational support.

The Fundamental Plane

The results we report on the evolution of the Fundamental Plane indicate that ELOs

conform a homogeneous population at any redshift. The preservation of the dynamical

plane in these redshifts for our simulations also agrees with previous work based on

dissipationless simulations of pre-prepared mergers (Capelato et al., 1995; Dantas et al.,

2003; González-Garćıa & van Albada, 2003; Nipoti et al., 2003; Boylan-Kolchin et al.,

2005). This result explains the preservation of the Fundamental Plane with z when

seen in the edge-on projection. A mild evolution is also found indicating that high z

ELOs could be, more compact and have a higher velocity dispersion, than their lower

z counterparts. The interpretation of these trends could be linked with the amount of

dissipation that each ELO has suffered along its mass assembly.

Concerning the tilt of the Fundamental Plane relative to the virial relation at higher

redshifts, it has shown a similar origin as we found at z = 0: βvir 6= 0 βrd 6= 0 (Chap-

ter 6). Our simulations point out that the physical origin of the trends above lie in the

systematic decrease, with increasing ELO mass, of the relative amount of dissipation

experienced by the baryonic mass component along ELO stellar mass assembly. We

observed an evolution trend of βvir parameter towards an increase of the contribution of

the Mvir/M
star
bo ratio in the tilt of the Fundamental Plane as we go to higher redshifts.

On the other side, βrd contribution is not statistically confirmed (nor discarded) in all

samples.

The Photometric Plane

We have found that the projected mass density profiles of ELOs at different redshifts

can be well fitted by a Sérsic law. We also obtain a good comparison with observational

scaling relations up to z ∼ 1.5: n vs Rstar
e,bo ; n vs M star

cyl,bo ; n vs σstar
los,0 ; Rstar

e,bo vs M star
cyl,bo;

M star
cyl,bo vs σstar

los,0. This last correlation shows that ELOs of a given stellar mass become

less compact as z decreases, and that the higher the ELO mass and the more important

the difference. The Structural Photometric Plane, namely the relation between Rstar
e,bo,

M star
cyl,bo and n parameters, is found up to z = 1.5 in all the samples analyzed and

puts some strong limits on the structural values at any redshift. These results confirm

observational studies of La Barbera et al. (2005) for early-type galaxies at intermediate

redshifts.

From these results, one can arises with the wrong conclusion that individual objects
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do not evolve. The answer is that individual objects do evolve and that they do it

onto the Intrinsic Dynamical Plane. We have seen that some of the ancestors of the

EA-Z0 sample are found up to z = 1.5 in the Intrinsic Dynamical Plane and Structural

Photometric Plane that we found at z = 0. This implies that mergers between these two

redshifts keep the ELOs in the Fundamental Plane. These mergers are mostly gas-free.

Figure 8.9 shows an example of the evolution of an ELO in the shape parameter, n,

effective radius, rstar
e,bo and stellar mass, M star

bo . This is an important conclusion that put

some light in the question about if it is possible to obtain massive early-type galaxies

from (dissipative or gas-free) mergers of galaxies (Aceves et al., 2006; Ciotti et al., 2007).

Figure 8.9: Parameter evolution for an ELO analyzed at four different redshifts: z = 1.5
(green), z = 1.0 (cyan), z = 0.5 (orange) and z = 0 (black).

Rotation versus Shape

On the other hand, studying the rotational support and shape of a bigger sample of

ELOs, we found that a systematic change through time, i.e. evolution, by becoming

rounder in general at z = 0 and, at the same time more velocity dispersion supported.

This is found to be primarily due to major dry mergers where only a modest amount

of angular momentum is involved into the merger event. Despite the general trend,

in a significant amount of cases the merger event involves a higher specific angular

momentum, which in general causes the system to acquire a higher rotational support

and/or a more oblate shape. These evolutionary patterns are still present when we study

our systems in projection, mimicking real observations, and thus they should become

apparent in future observations.

We have seen that relaxed ELO samples show a mild evolution in their structural

and kinematical parameters that describe their 3D (M star
bo ,rstar

e,bo,σstar
3,bo and µ) and 2D

(M star
cyl,bo,Rstar

e,bo,σstar
los,0 and n) mass and velocity distributions. On the other hand, shape
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(ε) and rotational support (Vmax/σ
star
los,0) show clear signs of evolution. These results are

not in disagreement between each other because these parameters characterize different

properties of ELOs. In the case of shape and rotation for elliptical galaxies, the specific

value of these parameters is more related with the particular history of the ELO as they

are heavily linked with the dynamical events in which the ELO has been involved along

its mass assembly and especially by the last one of these events. In the first case, this

assembly process seems to be erased from the structural and kinematical properties of

the ELO, but for a mild evolution observed for the more massive ELOs. Therefore we

conclude that these parameters provide a more detailed description for relaxed ELOs.

This is not very surprising because equilibrium states do not depend on how the paths

leading to them. Manrique et al. (2003) have analytically probed a similar result for dark

matter halos. In their model, the density profile of relaxed halos permanently adapts to

the profile currently building up through accretion and does not depend on their past

aggregation history. Therefore the typical density profile of halos of a given mass at a

given epoch is set by their time-evolving cosmology-dependent typical accretion rates.

As a consequence this model predicts the existence of time-invariant relations among the

structural parameters that describe these halos (See discussion in Salvador-Solé et al.,

2005, 2007). To try to put all these results under a common framework, we have to

study ELO assembly and its effect on ELO mass and velocity distributions, as well as

on the stellar age distributions. This is the subject of our next chapter.



Chapter 9

Galaxy Formation and Evolution

from DEVA Simulations1

9.1 Introduction

In the previous Chapters we have studied the fundamental structural and kinematical

properties of elliptical-like objects (ELOs) at redshift zero and their evolution since

z = 1.5. We have obtained some clues about how they are settled and we have seen that

they show a very good agreement with several classical observational relations. However

as discussed in Section 3.3 different observational results point to apparently paradoxical

results concerning the formation of elliptical galaxies. None of the formation scenarios

proposed (monolithical collapse or hierarchical mass assembly), can so far recover all

the observational information we have at our disposal on local ellipticals (downsizing

or age effects in their stellar populations; the tilt of the Fundamental Plane relation;

the presence blue cores), as well as at intermediate or high redshifts (the near-lack of

evolution of the FP in dynamical terms, among others).

The aim of this chapter is to describe a scenario arising from the simulations provid-

ing an explanation of the different results discussed in previous sections. To this end,

we have made use of the opportunity that brings us self-consistent simulations. This

is, to follow different physical processes relevant to elliptical formation along cosmic

time with a high enough time resolution: mass assembly, star formation and dissipation

rates, gas accretion history and their relation with different properties of galaxies.

The following section is devoted to the mass assembly history of simulated ellipticals

and its relation with the star formation and dissipation rates. It introduces a massive

galaxy formation model. Section 9.3 presents the results of a study on the links among

the gas infall rate history and the star formation rate history along mass assembly,

1Based on Domı́nguez-Tenreiro, Oñorbe, Sáiz, Artal, & Serna (2006); Domı́nguez-Tenreiro, Oñorbe,
Serna, & González-Garćıa (2008); González-Garćıa, Oñorbe, Domı́nguez-Tenreiro, & Gómez-Flechoso
(2009)
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giving some important hints on how galaxies obtained its gas. Section 9.4 presents our

conclusions.

9.2 Insights into ELO Assembly

To try to decipher the physical processes underlying the formation and evolution of

simulated ellipticals, we have drawn their mass aggregation track (MAT) along the

main branch of the corresponding tree, both for baryonic (the mass inside fixed radii)

and for total mass (the virial mass).

For each ELO in the different samples analyzed, we have identified its constituent

particles (gaseous or stellar) at z = 0. Among them, the most tightly bound particle

has also been identified and used, altogether with a sigma-clipping algorithm (see Sec-

tion 4.3) to search for the center-of mass of the object in the previous timestep available

for the simulation. This process is repeated at different z’s, so that we can determine

the trajectory of the virtual elliptical center-of-mass across the time. Once we have the

virtual elliptical center at different z’s, the mass aggregation track (MAT) along the

main branch of the merger tree can be drawn. So, for each ELO in the samples, its

MAT has been drawn, both for its baryonic component (the mass inside fixed radii) and

for its dark matter halo mass (the mass inside the virial radii). Figure 9.1 shows some

examples.

Figure 9.1: The mass-aggregation track along the main branches of the merger tree, for
two typical ELOs. Left: a massive ELO. Right: a less massive ELO. Both panels give
the total mass of the halo (black) and dark matter (blue) at rvir. Color lines stand for the
baryonic mass of the ELO at different fixed radii (3, 6, 9, 15, 21, 30 kpc). Discontinuities
represent merger events. In each of them we can differentiate fast (t/tu . 0.3) and slow
(t/tu & 0.3) mass aggregation rates, corresponding to the fast and slow phase.

These MATs inform us on the mass assembly process through time. Major merger
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can be clearly observed through a sudden increase of the stellar mass of a factor

Msecondary/Mprimary < 0.25 while minor mergers imply a lower mass gain. Aggregation

(i.e. smooth in-fall of mostly gaseous material) processes can also be clearly identified.

The relative angular momentum involved in a given merger event can also be esti-

mated through the MAT at a qualitative level in the following way: Any merger process

begins with the halo fusion, then the virtual galaxies they host begin to orbit around

each other, until their final coalescence. The higher the relative angular momentum

involved in the merger, and the higher the time interval elapsed since the first halo con-

tact and the coalescence of the virtual galaxies (i.e., the baryonic components). This

time interval can be directly measured in the MATs. Indeed, any mass entering into

the final virtual elliptical is first noticed in the halo mass as an increase in the virial

mass. Later on if the systems merge, such increase will be noticed as an increase in the

stellar mass. The difference in time between both moments may give us a qualitative

estimate of the orbital momentum involved in the merger (see for example the papers

by González-Garćıa & van Albada, 2003; González-Garćıa & Balcells, 2005).

We have also computed the star formation history of these objects taking into ac-

count all the stellar particles inside rbo. Figure 9.2 shows two examples. The different

trends between stellar age properties observed in these Figures and the structural and

kinematical parameters have been discussed in Section 6.4 for ELOs.

Figure 9.2: The star formation rate histories of two typical ELOs versus the Universe
age. Left: a massive ELO. Right: a less massive ELO. Note that most stars are formed
at high z, and the age effects according with the ELO mass.

All these analyses indicate that two different phases operate along ELO mass as-

sembly: first, a violent fast one, where the mass aggregation rates are high, and then, a

slower one, with lower mass aggregation rates. Results from analytical models, as well

as N-body simulations, have already pointed out this result (Wechsler et al., 2002; Zhao
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et al., 2003; Salvador-Solé et al., 2005). Here we have confirmed that this conclusion

holds also for the baryonic component (see De Lucia et al., 2006, for same results using

semi-analytical models).

9.2.1 The Two Phase Scenario

The simulations unveil the physical patterns of ELO mass assembly, energy dissipation

and star formation. These simulations indicate that ELOs are assembled out of the

mass elements that at high z are enclosed by those overdense regions R whose local

coalescence length Lc(t, R) (Vergassola et al., 1994) grows much faster than average,

and whose mass scale (total mass enclosed by R, MR), is of the order of an E galaxy

virial mass.

These overdense regions act as flow convergence regions (FCRs hereafter), whose

baryon content defines the particles that will end up in a bound configuration forming

an ELO. FCRs contain a hierarchy of attraction basins toward which a fraction of the

matter flows feeding the clumps they host. Another fraction of the matter keeps diffuse

(Figures 9.3 and 9.4).

9.2.1.1 Physics of the Fast Phase

At a given scale, overdense regions first expand slower than average, then they turn

around and collapse through fast global compressions, involving the cellular structure

elements they enclose (Figure 9.4) and in particular nodes connected by filaments, that

experience fast head-on fusions (i.e., multiclump collapse, see Thomas et al., 1999).

Figures 9.3 and 9.1 . Our hydrodynamical simulations indicate that these fast head-on

mergers (that is, with very low relative orbital angular momentum) result in strong

shocks and high cooling rates of their gaseous component (i.e., dissipation), and, con-

sequently, in strong and very fast SF bursts (Figure 9.2) that transform most of the

available cold gas at the FCR into stars (Figures 9.3 and 9.4).

For the massive ELO in the Figures, this happens between z = 6 and z = 2.5

(Figures 9.1 and 9.2) and mainly corresponds to a cold mode of gas aggregation, as in

Kereš et al. (2005, see next section for a detailed discussion on this issue). Consequently,

most of the dissipation involved in the mass assembly of a given ELO occurs in this

violent early phase at high z; moreover, its rate history2 is reflected by the SF rate

history (Figure 9.5).

The age distribution of the stellar populations of ELOs shows age effects: their

means are lower and their widths are narrower for more massive ELOs than for less

massive ones (see section 6.4), as inferred from observations. At the end of this phase,

most stars are already formed, the ELOs are virialized and the Fundamental Plane is in

2That is, the amount of cooling per time unit experienced by those gas particles that at z = 0 form
the ELO stellar component
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Figure 9.3: This Figure shows projections, at different redshifts, of the baryonic particles
that at z = 0 form the stars of a typical massive ELO. Green: cold gas particles. Blue:
stellar particles. The redshift decreases from left to right and from top to bottom (z = 6,
z = 3.5, z = 2.2, z = 1). Note the clumpy collapse of two different FCRs between z = 3.5
and z = 2.2 (fast phase) with ELO formation, and their merging between z = 2.2 and
z = 1 to give massive ELOs (slow phase).
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Figure 9.4: A projection of a 900 side box at z = 5.02. Red: stars. The other colors
mean gas density according with the code in the bar. This region will transform later
on into a virtual elliptical. At this high redshift we can appreciate the cellular structure,
the denser regions already turned into stars, and dense (cold) gas flowing towards the
node at the center of the FCR through filaments. Note also the presence of CHAIN
galaxies.
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place as a consequence of dissipation and homology breaking in the mass distribution

(see Chapters 6 and 8).

Figure 9.5: The cooling rate history (green line) and the star formation rate history
(red line) of a typical ELO in the simulations. Its mass-aggregation tracks are also
shown, both for total mass (dash line) and for cold baryon mass (i.e., stars and cold
gas, point-dashed line). The fast (left) and slow (right) phases of mass aggregation are
clearly shown. Note that most dissipation and SF corresponds to the fast aggregation
phase and that the last major merger results in a rather modest SFB at t/tU = 0.72.

9.2.1.2 Physics of the Slow Phase

The slow phase comes after the multiclump collapse or fast phase. In this phase, the

halo mass aggregation rate is low and the Mvir increment results from major mergers,

minor mergers or continuous accretion. Our simulations show that the fusion rates are

generally low (see previous Chapter) and that these mergers generally imply only a

modest amount of energy dissipation or SF. In fact, a strong SF burst and dissipation
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Figure 9.6: z ∼ 4: Fast phase is over. Gas flows still feed the center. Stellar system
concentrated at the center, low SFR dominated by minor mergers, and passive ageing
of older stars. Gas density and stellar age are shown in the upper left panel and upper
right panel respectively.
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follow a major merger only if enough gas is still available after the early violent phase.

This is unlikely in any case, and it becomes more and more unlikely as Mvir increases.

And so, these mergers imply only a modest amount of energy dissipation or SF. A

consequence of this behavior is that the dynamical plane is preserved at the slow phase.

In fact, we have found in our cosmological simulations that dissipationless merger events

increase the ELO mass content, the size and the stellar mean square velocity, but roughly

preserve the dynamical FP3. A second consequence of this behavior is the trend of the

means and the spreads of the ELO stellar age distributions with Mvir, that are consistent

with observations (see Domı́nguez-Tenreiro et al., 2004).

Apart from ELO stellar mass growth following dry mergers, our simulations indicate

that M star
bo can also increase due to newborn stars, either (1), formed within the ELO

itself from accreted gas or gas coming in satellites, that falls to the central regions before

being turned into stars, or (2), more unlikely, formed through dissipative mergers. While

the first implies quiescent modes of star formation (see Papovich et al., 2005), and could

explain the blue cores observed in some relaxed spheroids, both of them could explain

the need for a young stellar population to fit some of their spectra, see references above.

Major merger events become less frequent as time elapses, allowing for a higher fraction

of relaxed spheroids. Both, on-going stellar mass assembly (either accreting stellar mass

fragments or forming newborn stars) and the decrease of the major merger rate, imply

an increase of the stellar mass density contributed by relaxed ELOs. In fact, we find

that it has changed by a factor of 2.1 between z = 1 and z = 0, in consistency with

empirical estimations (see Section 3.3.1).

Our simulations indicate that the halo mass aggregation rate is low and that its

increment results from major mergers, minor mergers or continuous mass accretion.

So, our simulations suggest that most of the stars of today ellipticals, could have

formed at high redshifts while they are assembled later on (see De Lucia et al., 2006,

for similar results from a semi-analytic model of galaxy formation grafted to the Millen-

nium Simulation). This formation scenario shares some aspects of both, the hierarchical

merging and the monolithic collapse scenarios, but it has also significant differences,

mainly that most stars belonging to EGs form out of cold gas that had never been

shock heated at the halo virial temperature and then formed a disc, as the conventional

recipe for galaxy formation propounds (see discussion in Kereš et al., 2005, and refer-

ences therein). An important point is that our simulations indicate that this formation

scenario follows from simple physical principles in the context of the current ΛCDM

scenario.

3The preservation of the FP in pre-prepared dissipationless mergers had already been studied by
Capelato et al. (1995); González-Garćıa & van Albada (2003); Nipoti et al. (2003); Boylan-Kolchin
et al. (2005) through N-body simulations.
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9.3 Accreting and Expelling Gas in ELOs

Galaxy formation scenarios generally predict that galaxies are embedded into halos of

hot diffuse gas, extending well beyond the distribution of stars. These halos are thought

to consist of gravitationally trapped gas with a temperature of millions of Kelvin. It

is important to remark the difficulty of studying the structure of hot gas halos around

elliptical galaxies because it requires that they are as isolated as possible and this type

of galaxies (specially the most luminous) are usually in dense environments.

The new generation of X-ray instruments (Chandra, XMM) confirms and extends

previous findings in ellipticals. Recent Chandra measurements (Humphrey et al., 2006)

have determined their total baryon fractions inside their virial radii. These fractions

indicate that these systems, despite having masses ≥ 5× 1012 M�, are not baryonically

closed at virial radius, i.e., their baryon fraction is lower than the average cosmological

one (Spergel et al., 2007). Put in other words, ellipticals miss baryons inside their virial

radii. In this sense elliptical formation scenarios must answer the following questions:

How did hot gas halos form? Where and when is the gas heated? Why are ellipticals not

baryonically closed? Where the missing baryons are? In this Section we have deepen

into these questions using the results of hydrodynamical simulations and tested the

model presented above.

9.3.1 Hot Gas in ELOS

Irrespective of their mass, ELOs identified in the simulations have an X-ray emitting

hot gas halo. The X-ray surface brightness profiles and total X-Ray luminosities of

ELOs have been studied by Sáiz et al. (2003) and they found an overall agreement with

observational data. We have already seen in Section 5.2.4 that these halos extend well

beyond their virial radii. Figure 9.8 shows these halos for 3 ELOs with different virial

masses. We can see that the temperature of the gas is linked with the mass and that

there are clear signs of substructure.

9.3.2 Baryon Fraction

An important point is the amount of gas infall relative to the halo mass scale. In

Section 5.2.4, we have studied the baryon space distribution at halo scales for ELOs at

z = 0 and obtained that the fbar(r) = ρbar(r)/ρtot(r) profiles show a typical pattern in

which their values are high at the center, then they decrease and have a minimum lower

than the global value (see Figure 5.13). We have measured the amount of baryonic

mass that it is inside the virial radii out of the total mass, Mbar
h /Mvir at redshifts z = 0,

z = 0.5, z = 1, z = 1.5 for ELOs of the EA sample. Figure 9.9 shows the results. We

found that in any case this quantity is lower than the average cosmic fraction (0.171 for

the EA sample cosmological model), i.e., ELOs are not baryonically closed. This means
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that there is a lack of baryons within rvir relative to the dark mass content that becomes

more important as Mvir increases and time elapses. By studying the hot gas profiles in

Section 5.2.4 we encountered that the baryons that ELOs miss inside the virial radius

are found at the outskirts of the configuration as diffuse hot gas (see Figure 5.14). In

the following section we will deepen into this issue and try to disentangle how these

baryons are heated.

Figure 9.9: Baryon fraction at different redshifts for the EA samples

9.3.3 When and Where is the Hot Gas Heated?

Therefore heating processes along ELO assembly give rise to a hot gas halo around the

objects, partially beyond the virial radii. Figure 5.14 shows that the amount of hot

gas mass, normalized to the cold baryonic content inside the virial radii, increase with

mass. The mass of hot gas increases monotonically up to r ∼ 4×rvir. This suggest that

the cold baryons massive ELOs miss inside rvir relative to less massive ones, appear as

diffuse warm component at the outskirts of their configurations.

According to the classical scenario, gas falling into a dark matter potential is shock

heated to the virial temperature at the virial radius, and forms a quasi-hydrostatic

equilibrium configuration with the dark matter. Shocked hot gas slowly cools and travels

inwards, forming the central cooled component (the galaxy) (White & Rees, 1978).
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However this scenario has recently been challenged by (Katz et al., 2003; Birnboim

& Dekel, 2003). These authors have found that only a fraction of the gas accreted

onto galaxies is shocked at virial radius (hot mode). The other fraction (cold mode)

is accreted onto a galaxy without ever being heated to high temperatures. This cold

accretion would owe its existence to the short cooling times present in low mass halos

near the virial radius, which prevents the development of a stable accretion shock. They

show that the cooling time condition corresponds approximately to a threshold in the

galaxy’s halo mass, with little dependence on redshift (see Kereš et al., 2008; Dekel

et al., 2009, for last results on this topic).

To deepen into all these issues we have studied the evolution of the gas component

of ELOs. To this end we have used a simulation (8716, see Section 4.2 for more details)

for which we have a lot of timesteps saved, that allow us to perform high time resolution

analyses (∆t = 6.9×106 yr) . We have followed the density and temperature evolution of

each baryonic particle that form ELOs at z = 0 by splitting them into several categories

depending on their radii (r < rbo, rbo < r < rvir and rvir < r < 2 × rvir) and types

(stars, cold and hot gas). The temperature limit for cold and hot gas particles has been

set at T = 2.5× 105 Kelvin (see Kereš et al., 2005).

Figure 9.10 illustrates the typical path that particles from the different categories

follow in a temperature-density plot. Colors represent the redshift: red for 20 < z < 3,

blue for 3 < z < 2 and green for z < 2. In general, hot gas particles at r < rvir

fall deeper into the potential well before they are heated than particles at r > rvir.

Otherwise, the underlying physical process is the same: gas shocks.

In Figure 9.11 we plot a histogram of the maximum temperature reached by all the

cold baryonic particles that at z = 0 are inside rbo for the most and least massive ELOs

in the 8716 simulation (M star
bo ∼ 3 × 1011M� and M star

bo ∼ 5 × 1010M� respectively).

Two different populations can be clearly observed, one that has never been heated (cold

mode) and another one that has (hot mode). Moreover, Figure 9.12 shows a histogram

of the cooling time for the hot mode particles, that is, the time interval elapsed from

the moment when the particle reaches its maximum temperature until it is cold again.

From this Figure we infer that the hot mode population does not remain in the halo and

slowly cools, but it cools faster than expected in the classical scenario. The typical path

for particles of the hot mode along time is shown in the upper panels of Figure 9.10.

Another important piece of information is provided by Figure 9.13. The histogram

shows the SFRHs for the same ELOs as above. Moreover, the red histogram shows for

each bin [t, t + Delta t], the mass of that particles (among the previous ones) that reach

their maximum temperature just in this time interval. Note the maxima of these two

histograms are correlated, as the read maxima do not appear while important bursts of

SF are turned on, but just after. That is, SF and gas heating are correlated, but with

a time delay. We have seen in the previous section that these star formation bursts
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are heavily linked with dynamical processes as mergers and/or aggregation. Therefore,

heating processes giving rise to the hot gas halos take place in regions of mass assembly

following violent dynamical events. Shocks heat the gas as it is accreted and, as a

consequence, it is partially expelled to the outskirts of the configuration. Another

interesting result from Figure 9.13 is that, for both ELOs, the ratio between hot mode

and cold mode is higher as we go to lower redshifts. Moreover, the hot over cold mode

mass ratio seems to be higher in the more massive objects. In order to deepen into this

issue Figure 9.14 shows the baryonic mass inside rbo at z = 0 that has never turned into

hot gas over the total baryonic mass inside rbo (i.e. the cold mode) for all ELOs in the

simulation. This Figure shows that the more massive ELOs have a more important hot

accretion mode population than the less massive ones. In fact, we have found in our

simulations (and can also be seen in Figure 9.14) that hot mode is delayed as we go to

lower mass objects indicating a strong relation between the mass of the object and gas

heating.

All these results presented here confirm the conclusions concerning the gas accretion

in galaxies obtained by Katz et al. (2003); Kereš et al. (2005, 2008) from cosmological

simulation, using a different code (DEVA) and a time resolution two orders of magnitude

higher than the one used by these authors.

Finally, we remark that the hot gas halos we show in this study are the result of a

continuous mass assembly process in the ΛCDM model. They are strongly linked with

shocks generated in accretion and merging processes. The cold gas in a flow convergence

region follows a fast cosmological collapse, described in previous section and at some

moment it is shocked, heated and expelled out of the densest regions. Our results show

that gas heating processes are more effective as the mass of the halo increases.
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Figure 9.10: Density-temperature paths for different particles along z. Colors represent
the redshift: red for 20 < z < 3, blue for 3 < z < 2 and green for z < 2. Up left and
right: two gas particles heated before falling into the galaxy and then transformed into
stars. Lower left panel: Hot gas particle inside rvir at z = 0. Lower right panel: Hot
gas particle outside rvir at z = 0.
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Figure 9.11: Histogram of the maximum temperature reached by all the baryonic par-
ticles inside rbo of two ELOs. Left: M star

bo ∼ 3× 1011M�. Right: M star
bo ∼ 5× 1010M�.

Figure 9.12: Histogram of the cooling time for all the baryonic particles inside rbo that
were accreted through the hot mode. Left: M star

bo ∼ 3 × 1011M�. Right: M star
bo ∼

5× 1010M�.
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Figure 9.13: Star formation rate and the maximum temperature mass rate of the hot
mode particles. Left: M star

bo ∼ 3× 1011M�. Right: M star
bo ∼ 5× 1010M�.

Figure 9.14: Baryonic mass accreted in cold mode over the total mass for ELOs of the
8716 simulation.
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9.4 Conclusions

In this thesis we have studied mass and velocity distributions of several samples of

virtual ellipticals formed in self-consistent cosmological simulations. The simulations

provide us with clues on the physical processes involved in elliptical formation. They

indicate that most of the dissipation involved in the mass assembly of a given ELO

occurs in the violent early phase at high z and on very short timescales (and earlier on

and on shorter timescales as the ELO mass grows, see details in Domı́nguez-Tenreiro

et al. 2004, 2006), as a consequence of ELO assembly out of gaseous material and its

transformation into stars. Moreover, the dissipation rate history is reflected by the star

formation rate history. During the later slower phase of mass assembly, ELO stellar

mass growth essentially occurs without any dissipation and the SF rate substantially

decreases. So, the mass homology breaking appears in the early, violent phase of mass

assembly and it is essentially preserved during the later, slower phase. A consequence

is that the dynamical plane appears in the violent phase and is roughly preserved along

the slower phase, see discussion in Chapter 8.

We see that our results on the role of dissipative dynamics essentially include previ-

ous ones, but they also add important new information. First, our results on the role of

dissipative dynamics to break mass homology agree with the previous ones, but it is im-

portant to note that, moreover, ELO stellar populations show age effects, that is, more

massive objects produced in the simulations do have older means and narrower spreads

in their stellar age distributions than less massive ones (see details in Section 6.4); this is

equivalent to downsizing (Cowie et al., 1996; Thomas et al., 2005) and naturally appears

in the simulations, so that it need not be considered as an additional assumption.

Second, the preservation of the FP in the slow phase of mass aggregation in our

simulations also agrees with previous work based on dissipationless simulations of pre-

prepared mergers (Capelato et al., 1995; Dantas et al., 2003; González-Garćıa & van

Albada, 2003; Nipoti et al., 2003; Boylan-Kolchin et al., 2005). But, again, it is im-

portant to note that the considerable decrease of the dissipation rate in the slow phase

of evolution naturally appears in the simulations and we do not have to assume this

decrease. Also, the decrease of the merger rate in the later phase of mass assembly re-

sults from the global behavior of the merger rate history in the particular cosmological

context we have considered. Third, it turns out that the physical processes involved in

ELO formation unveiled by our simulations, not only explain mass homology breaking

(and its implications in the formation and preservation of the dynamical plane), and

stellar age effects or downsizing in ellipticals, but they might also explain other ellip-

tical properties recently inferred from observations. For example, the appearance of

blue cores, Menanteau et al. (2004); Lee et al. (2006); the increase of the stellar mass

contributed by the elliptical population since higher z, Bell et al. (2004); Conselice et al.

(2005); Faber et al. (2007) (see more details in Domı́nguez-Tenreiro et al., 2006).
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All our results on the structural and kinematical properties of elliptical galaxies

indicate that baryonic matter (specifically dissipation and gravitational shocking) plays

an important role in the origin of the observed fundamental relations. For this reason

we have tried to deepen into the history of gas particles and how they were accreted in

the ELO. In the classical scenario gas particles are first heated by gravitational shocks

and then cool and fall into the galaxy. However, we have found that there are two

different modes of gas accretion by galaxies: a cold mode and a hot mode, confirming

previous results (Kereš et al., 2005, 2008). The cold mode includes gas particles that

had never been heated before being accreted by the galaxy. Simulations also show

that heated gas particles (hot mode) cool faster than expected in the classical scenario

(White & Rees, 1978). We found that the importance of both modes are related with

the mass of the galaxy and more massive galaxies are more efficient in heating the gas

by gravitational shocks. This is also related with the fact that these galaxies have a

lower baryonic content inside its virial radius than the less massive ones. However more

detailed simulations would be needed in order to obtain the real ratio of each one.

It is worth mentioning that the scenario presented in this Chapter shares some

characteristics of previously proposed scenarios, but it has also significant differences,

mainly that most stars in elliptical galaxies form out of cold gas that had never been

shock heated at the halo virial temperature and then formed a disk, as the conventional

recipe for galaxy formation propounds (see discussion in Kereš et al., 2005, and refer-

ences therein). The scenario for elliptical formation emerging from our simulations has

the advantage that it results from simple physical laws acting on initial conditions that

are realizations of power spectra consistent with observations of CMB anisotropies.
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Chapter 10

Conclusions and Outlook

10.1 Summary and Conclusions

In this work, we have presented results from self-consistent cosmological hydrodynami-

cal simulations, run with the DEVA code (Serna et al., 2003), both in its sequential and

parallelized (OPENMP) versions. DEVA is a multistep AP3M-like SPH code particularly

designed to study galaxy formation and evolution in connection with the global cosmo-

logical model. This code uses a formulation of SPH equations that ensures both energy

and entropy conservation by including the so-called ∇h terms. Particular attention

has also been paid to hold angular momentum conservation as accurately as possible.

Cooling processes have been included for the baryonic component. Star formation (SF)

has been implemented in the code in the framework of the turbulent sequential scenario

(Elmegreen, 2002) through a phenomenological parameterization that transforms cold

locally collapsing gas, denser than a threshold density, ρthres, into stars with a timescale

given by the empirical Kennicutt-Schmidt law (Kennicutt, 1998).

Galaxy-like objects of different morphologies are formed in the simulations. We

have been extremely careful in designing a solid method for the classification of galaxies

so that the fulfillment of some specific requirements is guaranteed. Using this method

and with the aim of studying structure and kinematics of elliptical galaxies we have

built samples of elliptical-like objects for each simulation. Within this process, special

emphasis is made on the features that differentiate this work from previous studies:

obtaining a statistically reliable sample of elliptical-like objects from cosmological ini-

tial conditions with enough spatial resolution. In order to do so, we have developed

visualization software, –for a first approximation to the simulations– and an important

pipeline for numerical analysis of the simulations that allowed us to characterize and to

study elliptical-like-objects at two different scales: halo scale and baryon object scale.

The proposed approach covers the whole analysis process, from running the simu-

lation to its final comparison with observational results. We have focused on different

fundamental relations between kinematic and structural parameters, first trying to char-
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acterize them at z = 0 and then studying their evolution. At the end of each Chapter

partial conclusions on the different subjects studied in this work can be found. Here we

summarize them and give a global vision of this thesis:

We have first analyzed the structural and kinematical profiles of ELOs, finding a

good agreement with observations in the projected stellar profiles (Sérsic law) and the

dark-to-stellar gradients and dark-over-total ratios. These agreements with observa-

tional data strongly suggest that the intrinsic three-dimensional dark and bright matter

mass and velocity distributions we get in the simulations might also adequately describe

real ellipticals. We can summarize that ELOs are embedded in extended massive dark

matter halos which have suffer from adiabatic contraction. At the halo scale, ELOs

are not baryonically closed at this scale, i.e., ELOs miss baryons inside the virial radius

(rvir) compared with the average baryon-to-dark fraction. Moreover, massive ELOs miss

baryons as compared with less massive ones, when we normalize to the dark matter.

This trend extends up to the short scales of ELOs. Baryon fraction profiles have been

found to show a typical pattern such that, the baryons that ELOs miss are found at

the outskirts of the configuration as diffuse hot gas. Concerning kinematics, stellar and

dark matter particles constitute two dynamically hot components with important veloc-

ity dispersions. These dark and bright matter components of ELOs are kinematically

segregated and do not show any clear mass or radial dependence. (Chapter 5).

As a second step, we have defined the different characteristic parameters which

describe these profiles at different scales (from the halo scale to the projected stellar

object). We have found that the (logarithms of the) ELO stellar masses, projected

stellar half-mass radii, and stellar central line-of-sight (LOS) velocity dispersions define

a dynamical fundamental planes (dynamical FPs) for all the different ELO samples.

Zero points depend on the particular values that the star formation parameters take,

while slopes do not change significantly when we change the size of the box simulated,

cosmological parameters (within the ΛCDM framework), resolution or star formation.

These planes are the observational manifestation of the intrinsic dynamical plane (IDPs)

which relates the 3D parameter counterparts: stellar masses M star
bo , stellar half-mass

radii rstar
e,bo, and stellar mean square velocity of the central object σstar

3,bo. All the ELO

samples have been found to show systematic trends with the mass scale in in the relative

content of the dark and baryonic mass components that can be written as power-laws

of the form Mvir/M
star
bo = Avir(M

star
bo )βvir . A similar trend as the first one, although not

statistically confirmed (nor discarded) in all samples, is also observed in the relative

distributions of the dark and baryonic mass components, rtot
e,h/r

star
e,bo = Ard(M star

bo )βrd

(See discussion in Section 6.5.3). We have found that the dynamical FPs established

by the ELO samples are consistent with that shown by the SDSS elliptical sample

in the same variables, with no further need for any relevant contribution from stellar
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population effects to explain the tilt of the observed Fundamental Plane from the virial

relation. These effects could, however, have contributed to the scatter of the observed

FP, as the dynamical FPs have been found to be thinner than the observed one. The

results we report on hint, for the first time, at a possible way to understand the tilt of

the observed FP in a cosmological context. Our simulations suggest that the physical

origin of these trends lies in the systematic decrease, with increasing ELO mass, of

the relative dissipation experienced by the baryonic mass component along ELO mass

assembly. (Chapter 6).

In addition, ELOs 3D structural parameters, M star
bo , rstar

e,bo and µ (the 3D shape pa-

rameter equivalent to the 2D Sérsic shape parameter n) define intrinsic structural planes

(ISPs). However these planes are not as tightly correlated as the IDPs are. The Photo-

metric Plane is the observational manifestation of this relation. An interesting result is

that we have discarded the possibility that the Fundamental Plane and the Photomet-

ric Plane are two projections of a four parameter law. We made the study for the 2D

observational relations and their 3D counterparts. We found that the shape parameter

n (or µ in 3D) does not add significant physical information to the Fundamental Plane

relation (or intrinsic). (Chapter 6).

Stellar age properties of virtual ellipticals have shown a clear trend with their struc-

tural and dynamical characteristic parameters and seem to be linked with their forma-

tion and evolution processes in a cosmological scenario. Also, ELO stellar populations

have age distributions with the same trends as those inferred from observations, i.e.,

most stars have formed at high z on short timescales, and, moreover more massive ob-

jects have older means and narrower spreads in their stellar age distributions than less

massive ones (Domı́nguez-Tenreiro et al., 2004). This is equivalent to downsizing (see

3.3). (Chapter 6).

By studying the classical diagram introduced by Davies et al. (1983), we have shown

that the shape distribution of our simulated galaxies and their kinematics are closely

related and in good agreement with the observational data. We have confirmed that

more massive ELOs show a lower dispersion in rotational support and ε shape values

than less massive ones, pointing to rounder shapes and lower rotational support for the

first ones. Finally we have seen that the 3D shape of a simulated elliptical could be

constrained by the position that it occupies in the classical diagram that relates these

two quantities. (Chapter 7).

From the analysis of ELOs at different redshifts, the main result we report on is

the quasi-homogeneity of the relaxed ELO population with respect to z, as measured

through the dynamical plane defined by their stellar masses, three-dimensional sizes

and mean square stellar velocities at different zs, and, at the same time, the increase

of the average values of these parameters as time elapses. The simulations also provide

us with clues on how these evolutionary patterns arise from the physical processes
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involved in galaxy assembly, namely, the plane appearance at an early violent phase as

a consequence of dissipation (i.e., gas cooling and its subsequent transformation into

stars), and the plane preservation during a later, quiescent phase, where dissipationless

merging plays an important role in stellar mass assembly. This early gas consumption

of proto-ellipticals also explains why most of the stars of today ellipticals formed at

high redshifts. Simulations give also clues on why the homogeneity is consistent with

the appearance of blue cores as well as with the increase of the stellar mass contributed

by the elliptical population since higher z. (Chapters 8 and 9)

However, studying the rotational support and shape of ELOs we found a systematic

change through time, i.e. evolution, by becoming rounder as we move to lower redshifts

and at the same time more velocity dispersion supported. This is found to be primarily

due to major dry mergers where only a modest amount of angular momentum is in-

volved into the merger event. Despite the general trend, in a significant amount of cases

the merger event involves a higher specific angular momentum, which in general causes

the system to acquire a higher rotational support and/or a more oblate shape. These

evolutionary patterns are still present when we study our systems in projection, mim-

icking real observations, and thus they should become apparent in future observations.

(Chapter 8).

All our results on the structural and kinematical properties of elliptical galaxies

indicate that baryonic matter (specifically dissipation and gravitational shocking) plays

an important role in the origin of the observed fundamental relations. For this reason

we have tried to deepen into the history of gas particles and how they were accreted in

the ELO. In the classical scenario gas particles are first heated by gravitational shocks

and then they slowly cool and fall forming the galaxy. However, we have found that

there are two different modes of gas accretion by galaxies: a cold mode and a hot mode,

confirming previous results (Kereš et al., 2005, 2008). The cold mode includes gas

particles that had never been heated before being accreted by the galaxy. Simulations

also show that heated gas particles (hot mode) cool faster than expected in the classical

scenario (White & Rees, 1978). We found that the importance of both modes is related

with the mass of the galaxy and more massive galaxies are more efficient in heating the

gas by gravitational shocks. This is also related with the fact that these galaxies have

a lower baryonic content inside its virial radius than the less massive ones. However

more detailed simulations would be needed in order to obtain the real ratio of each one.

(Chapter 9)

Finally, we conclude that the simulations studied in this work provide a unified

scenario where most current observations on ellipticals can be interrelated, and that

this scenario has the advantage that it results from simple physical laws acting on

initial conditions that are realizations of power spectra consistent with the observations

of CMB anisotropies. The scenario presented in this work should be considered as a
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first order approximation to the real process in which elliptical galaxies are formed.

In this scenario subresolution processes of energy injection have been implicit included

through the values of ρthres and c∗. In a near future we will add to our codes these

physical processes in an explicit way.

10.2 Discussion

We have been extremely careful in studying the impact of different systematics in our

conclusions. We have checked how the star formation parameters, the resolution, the

cosmological model parameters or the size of the box simulated can affect our results.

We have presented and discussed them and found that:

• Changes in the star formation parameters have a great impact in the ELO proper-

ties and settle the zero point of several fundamental relations for elliptical galaxies

studied in this work, as the Fundamental Plane or the relation between stellar age

properties and kinematical descriptors. However, we have found that the star for-

mation algorithm affect in different directions these relations in terms of obtaining

a good agreement with observational data. Therefore for a given simulation, the

star formation parameters have just a narrow specific range in which they can

produce realistic objects.

• We have run several resolution tests using simulations in which the space resolution

was increased by a factor of two and the mass resolution by a factor of eight. All

these analyzes have shown a good agreement for the structural, kinematic and

stellar properties between elliptical-like objects of different resolutions.

• Changes in the cosmological parameters (ΩΛ, Ωm, Ωb, h) within the ΛCDM

framework have not produced any significant change in the trends and results

found for simulated ellipticals. Nevertheless, we can mention that the amount of

baryonic matter available is one of the parameters that determine the final number

of elliptical-like objects and the range in mass of the sample that we will obtain

from a simulation. The other parameter that has an important effect in the final

number of ELOs in a simulation is the normalization parameter, σ8. Simulations

with a higher σ8 have higher energy input. These simulations mimic an active

region of the Universe (Bryan & Norman, 1998). In these regions all the evolution

from primordial inhomogeneities occurs faster and early-type objects are more

frequent.

• Concerning the size of the box, we have obtained ELO samples for simulations

with Lbox = 10, 20 and 80 Mpc. As discussed in Section 4.2, Lbox affects the re-

sults in a simulation because decreasing Lbox is equivalent to putting a large-scale
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cut-off to the power spectrum of perturbations. Simulations with a large box size

are required to correctly get convergence on the results for the two-point correla-

tion, mass functions, etc. However, this does not imply that the modification of

these global properties of the large scale structure has necessarily an impact on

the inner properties of the small scale systems (galaxies and their halos). We have

found that box sizes changes imply that the clustering properties change and con-

sequently, the statistics of ELO mass assembly paths change: i.e. the fraction of

ELOs assembled through mergers of different characteristics, or at different times,

changes. However this has no significant consequences on average on the 3D mass

profiles, velocity distribution. That is, relaxed mass and velocity distributions

forget the details on how mass is assembled or the velocity is acquired. This is

not very surprising because equilibrium states do not depend on the path leading

to them. Manrique et al. (2003) have analytically probed a similar result for dark

matter halos. In their model, the density profile of relaxed halos permanently

adapts to the profile currently building up through accretion and does not depend

on their past aggregation history. Therefore the typical density profile of halos of

a given mass at a given epoch is set by their time-evolving cosmology-dependent

typical accretion rates. As a consequence this model predicts the existence of time-

invariant relations among the structural parameters that describe these halos (See

discussion in Salvador-Solé et al., 2005, 2007).

Finally we discuss briefly on some of the different sub-scale physic which have not

been explicitly considered in our simulations: metal enrichment and stellar evolution

(supernovae and black holes). Concerning chemical evolution, Mart́ınez-Serrano et al.

(2008) have recently included it in DEVA code. Preliminary results on the structural

and kinematical properties of the elliptical-like objects of cosmological simulations have

showed a good agreement with the results presented in this thesis. Feedback effects

from supernovae, active galactic nuclei (AGN) or energy inputs other than gravita-

tional have not been explicitly included in these simulations. We note that the role of

discrete stellar energy sources at the scales resolved in this work is not yet clear. Theo-

retical arguments (Efstathiou, 2000) suggest that supernova feedback rapidly becomes

ineffective in systems with velocity dispersions greater than 100 km × s−1. Indeed,

MHD simulations also indicate that supernova effects in the star formation of galaxies

are more important for low massive galaxies (Scannapieco et al., 2008). On the other

hand, AGN feedback may be important in galaxies with high velocity dispersions (Silk

& Rees, 1998; Ciotti & Ostriker, 2001) such as those studied in this work. However

the nature, and indeed the direction, of the triggering is unclear (Silk, 2005), and it

is worth mentioning that until now, only models which incorporate negative (namely

which quenches SF) feedback have been simulated (see however Pipino et al., 2009, for

a first approach into the opposite direction). Our point of view, therefore, is to keep
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the physics of the simulations as simple as possible and to get an understanding on the

behavior of a simplified problem before investigating additional complexities such as

supernova and AGN feedback.

10.3 Outlook

It is said that in a work such as this one, development is never truly finished, it is only

halted. This is certainly true in this case; there are just too many things to test, to

polish, to add. But at some moment the line must be drawn. In the case of this work,

it has been drawn at the point in which the approach is beginning to prove effective: we

have a cosmological based framework that is able to reproduce and explain some of the

tightest structural and kinematical correlations observed for ellipticals and it is robust

against changes in the cosmological parameters, the space and mass resolution and the

size of the box simulated.

Concerning our tools, the development of a parallelized version of the code has had an

incredible impact, increasing the number of particles that can be simulated and opening

the door to the DEVA code of high performance facilities as the Leibniz Supercomputing

Center. Also, Mart́ınez-Serrano et al. (2008) have just introduced chemical evolution

in DEVA code. This will bring us the possibility of obtaining variables that are directly

observable through the use of stellar population synthesis models. This issue, together

with the advantage of having a parallelized version of the code will certainly open an

incredible amount of possibilities for the future. In this sense, the analysis pipeline

developed in this thesis is a solid instrument that could be used as the main branch

for the expected development of algorithms and functions to analyze these forthcoming

simulations.
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Apéndice A

Introducción

Este trabajo describe una propuesta para el estudio de la formación y evolución de

galaxias eĺıpticas en un contexto cosmológico.

La introducción comienza con una descripción de la motivación inicial y los objetivos

buscados. En el siguiente apartado, se procede a enumerar y describir una serie de

áreas de conocimiento relacionadas con la propuesta, y, a continuación, se presenta la

propuesta en śı. En la última sección se describe, a grandes rasgos, la organización del

resto del trabajo.

A.1 Motivación y objetivos

Desde 1930, cuando las galaxias se confirmaron como los elementos de construcción

fundamentales del universo, su origen y evolución se ha mantenido como uno de los

más importantes retos para la astronomı́a y la cosmoloǵıa. Sin embargo, también re-

sultó evidente que era uno de los más dif́ıciles de discernir fundamentalmente por dos

razones:

Primero porque las galaxias evolucionan en un tiempo muy prolongado, lo que hace

imposible estudiar una galaxia desde su nacimiento a su muerte. Aśı pues, los astróno-

mos se han enfrentado al reto de estudiar las galaxias a través de fotos instantáneas

aisladas. Recientemente una nueva generación de telescopios y espectrógrafos ha hecho

posible coleccionar un inmenso número de estas instantáneas e incluso lo que es aun

más importante, ver galaxias muy lejanas.

La segunda razón fue que, como en cualquier problema f́ısico, el estudio de la forma-

ción de galaxias necesita unas condiciones iniciales sólidas. La cosmoloǵıa ha estudiado

este tema durante las últimas siete décadas y en los últimos años ha surgido un modelo

cosmológico basado en firmes ideas f́ısicas y observacionalmente consistente. El modelo

del Big Bang ó de la gran explosión para describir el Universo en expansión, cuya es-

tructura y dinámica puede ser descrita en el marco de la relatividad general, tiene un

numero de parámetros cosmológicos que actualmente están bien acotados por numerosas
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observaciones: Las medidas del satélite WMAP del fondo de radiación de microondas

(FRM, Dunkley et al., 2009), los datos de supernovas (Riess et al., 2007) las mediciones

de estructura a gran escala (Massey et al., 2007; Percival et al., 2007) entre otras, han

establecido un modelo concordante de Universo espacialmente plano con una densidad

de materia de aproximadamente el 30 % de la cŕıtica.

Este modelo predice que la estructura a gran escala de la distribución de galaxias

que observamos en los catálogos de galaxias tiene que haberse formado a través del

colapso gravitacional de pequeñas fluctuaciones primordiales. Las propiedades de estas

densidades a gran escala pueden predecirse desde las condiciones iniciales observadas en

el FRM combinadas con nuestro conocimiento de la gravedad descrita por la relatividad

general. Los distintos catálogos que incluyen estudios a gran escala como SDSS (York

et al., 2000) o 2dF (Folkes et al., 1999) confirman esta idea. Mientras que la teoŕıa del

origen de las estructuras a gran escala es más que prometedor, existen sin embargo,

preguntas abiertas a menor escala que el modelo estándar tiene todav́ıa que contestar.

Una de ellas es la formación de las galaxias para la que el modelo tiene que poder

explicar un inmenso número de datos observacionales ya disponibles.

De hecho, actualmente el número de datos observacionales disponibles es tan inmenso

que el estudio detallado del origen y evolución de las galaxias exige centrarse en algún

caso espećıfico. El termino galaxia comprende una amplia variedad de tipos de galaxias

con diferentes propiedades. Una forma de profundizar en este tema durante las últimas

décadas ha sido intentar conocer como se ha formado cada uno de estos tipos de galaxias,

ya que compartiendo las mismas propiedades f́ısicas su proceso de formación debeŕıa

compartir también algunos aspectos comunes.

De todas las clases o tipos de galaxias, las galaxias eĺıpticas son las más fáciles de

estudiar ya que muestran las regularidades emṕıricas más precisas, a veces en forma

de correlaciones muy fuertes entre sus parámetros observacionales (Djorgovski & Davis,

1987; Faber et al., 1987; Caon et al., 1993; Bernardi et al., 2003a). El interés de estas

regularidades reside en que pueden tener codificada mucha información relevante acerca

del proceso f́ısico que subyace en la formación y evolución de las eĺıpticas.

Todos los nuevos avances hacen posible por vez primera preguntarse cuestiones clave,

significativas sobre el modo en que las galaxias eĺıpticas se formaron y como evoluciona-

ron a través de los 10 billones de años de historia del Universo. ¿Cuándo aparecieron?

¿Qué provocó el proceso de su formación? ¿Se forman todas en una única época bien

definida ó su formación se extiende en el tiempo? ¿Cuál es la conexión entre esta pobla-

ción y la f́ısica del inicio del universo? Y quizá lo más interesante de todo, ¿Cual es el

proceso que establece las relaciones observadas entre varias propiedades estructurales y

cinemáticas?

Las simulaciones hidrodinámicas autoconsistentes son una poderosa herramienta

para investigar estas preguntas, ya que permiten seguir de forma precisa la evolución
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de las propiedades dinámicas y termodinámicas de la materia en el universo. La idea

general es resolver simultáneamente las ecuaciones gravitacionales e hidrodinámicas. La

clave está en conectar las condiciones iniciales ofrecidas por la cosmoloǵıa y todos los

datos disponibles de las observaciones. Por ello, en cierto sentido juegan el papel de los

experimentos para los astrof́ısicos.

La mayor ventaja de este tipo de simulaciones es que la f́ısica se introduce al nivel

más general, y los procesos dinámicos relativos al ensamblaje de las galaxias, tales como

el colapso, la cáıda de gas, interacciones, fusiones, etc., surgen de forma natural, en vez

de postulados a priori, y pueden ser seguidos en detalle. Sólo la escala f́ısica subresolu-

ción necesita ser modelada. Estas consideraciones enfatizan el interés en las simulaciones

hidrodinámicas como una herramienta conveniente para entender la formación y evolu-

ción de galaxias desde el campo de las fluctuaciones primordiales.

Aśı, la motivación para el presente trabajo ha sido usar simulaciones hidrodinámicas

autoconsistentes para construir un armazón teórico con el que interpretar y estudiar las

diferentes observaciones de galaxias eĺıpticas.

A.2 Aspectos teóricos

La propuesta que se esboza en la sección anterior tiene relación con varias áreas de

conocimiento. Los primeros Caṕıtulos de este trabajo se incluyen en la Parte I, Marco

Teórico, donde se describen las principales áreas de conocimiento asociadas a la pro-

puesta. A continuación se presentan brevemente los campos que se tratarán en esta

Parte I, aśı como las razones que han sugerido incluirlos en dichos Caṕıtulos.

Desde el momento que los modelos teóricos proporcionaron algunas condiciones ini-

ciales era una cuestión de tiempo que los cient́ıficos comenzaran a estudiar su evolución

y a compararlos con las observaciones. La compleja evolución de las perturbaciones ini-

ciales hace de las simulaciones cosmológicas de N-cuerpos, en las que se calcula solo la

fuerza gravitatoria, una poderosa herramienta para estudiarlos en el régimen no lineal.

Los primeros intentos de usar esta técnica en el estudio de la formación de estructuras

a gran escala comenzaron en los 70 (Peebles, 1974; Press & Schechter, 1974; Miyoshi

& Kihara, 1975; Aarseth et al., 1979), obteniendo un gran éxito y motivando varias

simulaciones cosmológicas de N-cuerpos en todo el mundo.

Desde estas primeras aproximaciones hasta nuestros d́ıas, los diferentes algoritmos

e ideas que engloba esta técnica han ido refinándose continuamente. En este sentido,

y en primer lugar habŕıa que decir que los simuladores están en deuda con todos los

incréıbles avances en tecnoloǵıa de computadores producidos en las últimas décadas.

La incorporación de la hidrodinámica a las simulaciones cosmológicas ha hecho po-

sible estudiar no solo la formación gravitacional de los halos de materia oscura, sino

también las propiedades de la materia bariónica, y por tanto la formación de galaxias
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asociada con esos halos. Las primeras simulaciones hidrodinámicas autoconsistentes se

realizaron a finales de los 80 (Evrard, 1988; Hernquist & Katz, 1989; Navarro & White,

1994).

Hasta la fecha, ningún código tiene el suficiente rango dinámico para considerar a

la vez la evolución cosmológica a gran escala en cientos de megapársecs y la formación

de estrellas de bariones. Pero la heuŕıstica f́ısica ha incorporado con éxito algunos al-

goritmos para a partir de modelos realizar la conversión de bariones en estrellas (Cen,

1992; Tissera et al., 1997; Thacker & Couchman, 2000). Desde el comienzo de este nue-

vo milenio varios grupos han obtenido gran éxito en modelar la formación de galaxias

utilizando simulaciones autoconsistentes que tienen en cuenta la dinámica de la materia

oscura y el gas, el enfriamiento radiactivo, la formación de estrellas y algunos otros

aspectos f́ısicos a escalas subresolución (Sommer-Larsen et al., 2002; Murali et al., 2002;

Meza et al., 2003; Sáiz et al., 2003; Kawata & Gibson, 2003; Sáiz et al., 2004).

En cualquier caso para hacer un estudio adecuado tenemos que entender no solo la

forma en que estas simulaciones funcionan, sus limitaciones y sus ventajas, sino también

conocer como comparar correctamente sus resultados con la teoŕıa y las observaciones.

En este punto necesitamos profundizar en los datos disponibles para las galaxias eĺıpticas

y descubrir que es lo que realmente sabemos sobre ellas. Es muy importante entender

como se ha obtenido toda esta información, para ser capaz de mimetizar en lo posible

los mismos métodos y facilitar la comparación.

Por último, también tenemos que estudiar los diferentes modelos que se han pro-

puesto para la formación y evolución de las galaxias eĺıpticas. Por una parte, un grupo

de primeras observaciones sugeŕıa que las galaxias eĺıpticas se formaron en épocas tem-

pranas y en escalas de tiempo muy cortas, en lo que se ha llamado escenario de colapso

monoĺıtico (Eggen et al., 1962; Larson, 1974; Matteucci, 2003). Por otra parte, otro gru-

po de observaciones recientes sugiere que las fusiones de galaxias a redshift intermedios e

incluso bajos pueden haber jugado un papel importante en la formación de las eĺıpticas,

señalando hacia lo que se conoce como escenario jerárquico (White & Rees, 1978; Cole

et al., 1994; Bundy et al., 2005). Estos resultados observacionales, que resultan a la vez

paradójicos y desafiantes, indican que el estudio de este problema en conexión con el

modelo cosmológico es una clara necesidad y un método muy prometedor.

A.3 Método

Inspirado por todo el trabajo previo en simulaciones autoconsistentes ya mencionado,

y especialmente por el trabajo de Sáiz et al. (2004) hemos intentado avanzar un paso

más en el estudio de las galaxias eĺıpticas usando este método. Para ello hemos tra-

bajado en obtener de las simulaciones estudiadas una amplia muestra de sistemas que

permita a la vez tener suficiente estad́ıstica, y que la resolución de estos sistemas sea lo
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suficientemente alta para permitir un análisis cinemático y estructural apropiado.

Un aspecto cŕıtico en relación con el código utilizado para realizar las simulaciones

es que las leyes de conservación se verifiquen exactamente. Particularmente, un código

numérico apropiado debe satisfacer todas las leyes de conservación para cantidades

f́ısicas como el momento, enerǵıa, o entroṕıa. En esta tesis hemos usado el código DEVA

(Serna et al., 2003) y su versión paralela P-DEVA que cumplen todos estos requisitos.

Ya que intentamos utilizar estas simulaciones como un método para entender mejor

el Universo real, es esencial tener una v́ıa más o menos directa de comparación entre los

resultados de la simulación y las observaciones. Para realizar esta comparación debemos

basarnos en las propiedades de las galaxias que se miden tanto en los resultados de las

simulaciones como en las observaciones.

En este trabajo, hemos estudiado la fuerte correlación observada entre diferentes

parámetros estructurales y dinámicos de las eĺıpticas. Utilizando las simulaciones hidro-

dinámicas hemos estudiado, además del equivalente a diversas medidas observacionales,

los parámetros fundamentales en 3D a escala estelar y los parámetros a escala del ha-

lo para todos nuestros objetos virtuales de tipo eĺıptico. Con la información obtenida

en este trabajo, queremos profundizar en el origen de estas correlaciones, señalar su

evolución con redshift y sus implicaciones en la formación de galaxias eĺıpticas.

Para poder realizar esta tarea primero debemos lidiar con el diseño de las simulacio-

nes que necesitamos para conseguir el objetivo estad́ıstico y de resolución en nuestras

muestras. Hemos de tener en cuenta que los recursos disponibles son limitados, en el

sentido no solo de la potencia de cálculo de las maquinas, sino también de tiempo real.

Una vez que configurados todos los detalles de las simulaciones, hemos construido

un grupo de herramientas de análisis dirigidas a una comparación apropiada entre los

datos observacionales y los resultados teóricos (anaĺıticos y simulaciones). Tal y como

puede verse a lo largo de este trabajo, estamos interesados en muchos parámetros y

propiedades diferentes de nuestras eĺıpticas virtuales, aśı que necesitamos desarrollar

una cantidad significativa de programas de computación y algoritmos. Sin embargo, la

idea general que preside nuestra implementación ha sido crear un proyecto sólido de

análisis que pueda ser útil no solo para analizar estas simulaciones sino también las del

futuro. Hemos hecho su arquitectura muy modular, para facilitar la inclusión de más

funciones y/o la mejora de las antiguas. Para facilitar la utilización de nuevos usuarios

se han definido diferentes parámetros globales que pueden ser ajustados rápidamente.

A.4 Estructura de la tesis

La tesis se organiza en cuatro partes:

Parte I – Marco teórico: Proporciona la base del trabajo para los resultados de

la Parte III con una introducción para cada campo de conocimiento utilizado en
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el presente trabajo. Los términos y conceptos utilizados en los resultados son in-

troducidos y descritos. El Caṕıtulo 2 Introduce las simulaciones hidrodinámicas

autoconsistentes. En particular presentamos el código utilizado en nuestras simu-

laciones, DEVA. El Caṕıtulo 3 proporciona una visión general de la teoŕıa actual

de formación de galaxias, los modelos y las cotas observacionales.

Parte II – Simulaciones y herramientas: Incluye el Caṕıtulo 4 en el que se presenta

una descripción detallada de las diferentes simulaciones estudiadas, como se han

analizado, y los diferentes aspectos técnicos relativos al análisis de las propiedades

de los objetos virtuales tipo eĺıptica.

Parte III – Resultados: Presentamos los resultados de nuestro estudio de la forma-

ción de galaxias utilizando simulaciones hidrodinámicas en dos bloques separados.

El primero, que incluye los Caṕıtulos 5, 6 y 7, profundizan en diversas propieda-

des cinemáticas y estructurales de las eĺıpticas virtuales. El segundo bloque versa

sobre las caracteŕısticas de las galaxias eĺıpticas en épocas más tempranas. En par-

ticular, el Caṕıtulo 8 presenta un estudio de evolución de las diferentes relaciones

fundamentales para este tipo de galaxias a partir de un corrimiento al rojo (z) por

debajo de 1,5. Finalmente, el capitulo 9, profundiza en los diferentes escenarios de

formación y evolución de galaxias eĺıpticas.

Parte IV – Conclusiones y trabajo futuro: Contiene las conclusiones, una breve

discusión y un esbozo general de futuras ĺıneas de trabajo.

El Apéndice A contiene la presente traducción al español del primer Caṕıtulo. En

el Apéndice B se puede encontrar la traducción al español de la parte IV: Conclusiones

y trabajo futuro. Adicionalmente, como marco general de este trabajo, el Apéndice C

presenta el Modelo Cosmológico Estándar a grandes rasgos, introduciendo varios con-

ceptos utilizados en esta tesis. El Apéndice D incluye varias tablas de datos a las que

nos referiremos a lo largo de esta tesis.

Finalmente, hay que indicar que parte del trabajo que se presenta en este manuscrito

ha aparecido publicado en diferentes revistas (Oñorbe et al., 2005; Domı́nguez-Tenreiro

et al., 2006; Oñorbe et al., 2006; Oñorbe et al., 2007; González-Garćıa et al., 2009)1 y

resúmenes de conferencias (Oñorbe et al., 2006; Oñorbe et al., 2006, 2007; Domı́nguez-

Tenreiro et al., 2008; Oñorbe et al., 2008) en los que he participado durante el desarrollo

de esta tesis, tal y como se indicará en cada Caṕıtulo cuando corresponda.

1Los primeros cuatro art́ıculos pueden encontrarse en el Apéndice E. El último art́ıculo ha sido
incluido en la Sección 8.5
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Conclusiones y trabajo futuro

B.1 Conclusiones

En este trabajo hemos presentado resultados de simulaciones cosmológicas hidrodinámi-

cas autoconsistentes realizadas con el código DEVA (Serna et al., 2003), en sus versiones

secuencial y paralelizada (OPENMP). DEVA es un código tipo SPH-AP3M multipaso

diseñado espećıficamente para estudiar la formación y evolución de las galaxias en co-

nexión con el modelo cosmológico. Este código usa una formulación para las ecuaciones

SPH que asegura la conservación tanto de la enerǵıa como de la entroṕıa incluyendo los

llamados términos ∇h. En este sentido se ha prestado una particular atención a que la

conservación del momento angular sea lo más precisa posible. El proceso de enfriamien-

to se ha incluido para la componente bariónica. La formación de estrellas (FE) ha sido

implementada en el código en el marco del escenario secuencial turbulento (Elmegreen,

2002) a través de un algoritmo de parametrizacion fenomenológica que transforma el gas

frió con una densidad superior a una densidad umbral y en colapso local, en estrellas con

una escala de tiempo dada por la ley emṕırica Kennicutt-Schmidt (Kennicutt, 1998).

En las simulaciones realizadas se han formado objetos tipo galaxia de diferentes

morfoloǵıas. Hemos sido extraordinariamente cuidadosos en diseñar un método sólido

para la clasificación de las galaxias en el que el cumplimiento de ciertos requerimientos

espećıficos esté garantizado. Usando este método, y con el fin de estudiar la estructura y

la cinemática de las galaxias eĺıpticas hemos construido muestras de objetos tipo-eĺıptica

(OTEs) para cada simulación. Durante este proceso se ha hecho un especial énfasis en

los aspectos que lo hacen diferente de otros estudios previos: la obtención de una muestra

estad́ısticamente significativa de objetos tipo-eĺıptica obtenidos a partir de condiciones

cosmológicas iniciales y con suficiente resolución espacial. Para ello hemos desarrollado

un software de visualización, –para una primera aproximación a las simulaciones–, y un

importante grupo de herramientas para el análisis numérico de las simulaciones que nos

permite caracterizar y estudiar los objetos tipo-eĺıptica a dos escalas diferentes: a escala

del halo y a escala del objeto bariónico.
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La aproximación propuesta en este trabajo cubre el análisis del proceso completo,

desde la realización de las simulaciones, hasta su comparación final con los resultados

observacionales. Nos hemos centrado en diferentes relaciones fundamentales entre los

parámetros estructurales y cinemáticos, primero intentado caracterizarlos a z = 0, y

después estudiando su evolución. Al final de cada caṕıtulo se pueden encontrar conclu-

siones parciales de los diferentes aspectos estudiados en este trabajo. Aqúı los resumimos

y damos una visión general de esta tesis:

Primero hemos analizado los perfiles estructurales y cinemáticos de los OTEs encon-

trando un buen acuerdo con las observaciones en los perfiles estelares proyectados (ley

de Sérsic) y los gradientes de masa de materia oscura sobre la estelar y los cocientes

entre masa de materia oscura sobre la total. Este buen acuerdo con los datos observa-

cionales sugiere que las distribuciones intŕınsecas tridimensionales de masa y velocidad

de la materia oscura y las estrellas que obtenemos en las simulaciones pueden también

describir adecuadamente las eĺıpticas reales. En resumen podemos decir que los OTEs

están embebidos en extensos halos masivos de materia oscura que ha sufrido contrac-

ción adiabática. A la escala del halo, los OTEs no están cerrados barionicamente, esto

es, los OTEs pierde bariones dentro del radio virial (rvir) comparado con el promedio

cosmológico de fracción de masa bariónica sobre materia oscura. Es más, los OTEs más

masivos pierden bariones comparados con los menos masivos, cuando normalizamos so-

bre el contenido de materia oscura. Esta tendencia se extiende a escalas más pequeñas

de los OTEs. Los perfiles de fracción bariónica muestran un perfil t́ıpico, de forma que

los bariones que los OTEs pierden se encuentran en los alrededores de la configura-

ción como gas caliente difuso. En relación a la cinemática las part́ıculas estelares y la

materia oscura constituyen una componente caliente con una importante dispersión de

velocidades. Las componentes de materia oscura y materia estelar de los OTEs están

cinemáticamente segregados y no muestran ninguna dependencia radial o en masa clara.

(Caṕıtulo 5).

En un segundo paso, hemos definido los diferentes parámetros caracteŕısticos que

describen esos perfiles a diferentes escalas (desde la escala del halo al objeto estelar

proyectado). Hemos encontrado que (el logaritmo de) las masas estelares de los OTEs,

el radio efectivo proyectado y las dispersión de velocidades estelar central en la ĺınea-

de-visión definen el Plano Fundamental Dinámico (PFD). El punto cero depende de

los valores particulares que toman los parámetros de formación estelar, mientras que la

pendiente no cambia significativamente cuando cambiamos el tamaño de caja simulado,

los parámetros cosmológicos (dentro del marco ΛCDM), la resolución o la formación

estelar. Estos planos son la manifestación observacional del plano dinámico intŕınseco

(PDI) que relaciona los parámetros 3D homólogos: la masa estelar M star
bo , el radio efec-

tivo estelar rstar
e,bo, y la dispersión de velocidades estelar en 3D σstar

3,bo. Todas las muestras
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de OTEs han mostrado una clara correlación entre la masa estelar y el contenido rela-

tivo de las componentes bariónica y de materia oscura que puede describirse como una

ley de potencias Mvir/M
star
bo = Avir(M

star
bo )βvir . También se ha encontrado una correla-

ción similar a la anterior entre la masa estelar y la distribución relativa de estas dos

componentes, rtot
e,h/r

star
e,bo = Ard(M star

bo )βrd , aunque en este caso no ha sido confirmada (ni

descartada) estad́ısticamente para todos las muestras (ver discusión en la Sección 6.5.3).

Hemos encontrado que los Planos Fundamentales Dinámicos de las distintas muestras

de OTE son consistentes con el obtenido de la muestra de eĺıpticas SDSS en las mismas

variables, sin necesidad de ninguna contribución relevante del efecto de la población

estelar para explicar la inclinación observada. Sin embargo estos efectos podŕıan con-

tribuir a la dispersión del PF observado, ya que los PFDs han resultado ser más finos

que este. Los resultados que se presentan en este trabajo sugieren, por primera vez, una

posible explicación del origen de la inclinación del Plano Fundamental en un contex-

to cosmológico. Nuestras simulaciones sugieren que el origen f́ısico de estas tendencias

reside en la disminución sistemática, con el aumento de la masa del OTE, de la disipa-

ción relativa experimentada por la componente bariónica a lo largo del ensamblaje del

objeto. (Caṕıtulo 6).

Además, los parámetros estructurales en 3D de los OTEs, M star
bo , rstar

e,bo, y µ (el

parámetro de forma en 3D equivalente al parámetro de forma de Sérsic en 2D, n)

definen planos intŕınsecos estructurales (PIEs). Sin embargo estos parámetros no están

tan correlacionados como los que conforman el PDI. El Plano Fotométrico es la manifes-

tación observacional de esta relación. Un resultado interesante es que hemos descartado

la posibilidad de que el Plano Fundamental y el Plano Fotométrico sean dos proyeccio-

nes de una relación aún más fuerte entre los cuatro parámetros que intervienen en ellas.

Este estudio se ha hecho para las relaciones observacionales en 2D y de sus equivalencias

en 3D. Encontramos que la forma del parámetro n (ó µ en 3D) no añade información

f́ısica significativa a la relación del Plano Fundamental Dinámico. (Caṕıtulo 6).

Las propiedades de la edad estelar de las eĺıpticas virtuales han mostrado una cla-

ra correlación con sus parámetros estructurales y dinámicos caracteŕısticos que parece

ligada a su proceso de formación y evolución en un escenario cosmológico. Las pobla-

ciones estelares de OTE tienen distribuciones de edad con las mismas caracteŕısticas

que las inferidas de las observaciones, esto es, la mayoŕıa de las estrellas se ha formado

a alto z en escalas de tiempo cortas, y, además, los objetos más masivos muestran me-

dias más viejas y una dispersión más estrecha en la distribución estelar que los menos

masivos (Domı́nguez-Tenreiro et al., 2004). Esto es equivalente al dowsizing (Ver 3.3).

(Caṕıtulo 6).

Estudiando el diagrama clásico introducido por Davies et al. (1983), hemos de-

mostrado que la forma de nuestras galaxias simuladas y su cinemática se encuentran

relacionadas y en buena concordancia con los datos observacionales. Hemos confirmado
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que los OTEs mas masivos muestran una dispersión más baja en su soporte rotacional

y los valores de forma ε, que las menos masivas, apuntando a formas más redondas y a

un soporte rotacional menor en las primeras. Finalmente hemos visto que la forma en

3D de una eĺıptica simulada puede obtenerse a través de la posición que ocupa en el

diagrama clásico que relaciona estas dos cantidades en 2D (Caṕıtulo 7).

Del análisis de los OTEs a diferentes épocas, el principal resultado es la cuasi-

homogeneidad de la población de OTEs relajados con respecto a z, medida a través del

plano dinámico definido por sus masa estelares, tamaños tridimensionales y dispersión

de velocidades a diferentes zs, y, al mismo tiempo, el aumento de los valores medios de

estos parámetros según pasa el tiempo. La simulación también nos da claves de cómo

estas pautas de evolución surgen de los procesos f́ısicos involucrados en el ensamblaje de

galaxias, esto es, la aparición del Plano Fundamental en una fase violenta inicial como

consecuencia de la disipación (esto es enfriamiento del gas y su subsiguiente transfor-

mación en estrellas). La conservación del plano durante una fase posterior, quiescente,

donde las fusiones sin disipación juegan un papel importante en el ensamblaje de la

masa estelar. Este consumo precoz del gas en las proto-eĺıpticas también explica porque

la mayoŕıa de las estrellas de las eĺıpticas de hoy en d́ıa se formaron a altos redshifts.

Las simulaciones también nos dan ciertas pistas en cómo esta homogeneidad puede ser

consistente con la aparición de núcleos azules y con el aumento de la contribución de

las galaxias eĺıpticas a la masa estelar desde alto z. (Caṕıtulos 8 y 9).

Sin embargo, por otra parte, estudiando el soporte rotacional de la forma OTEs en-

contramos que existe un cambio sistemático a través del tiempo, esto es, evolución, que

indica que los objetos son más redondos conforme el tiempo avanza y, al mismo tiempo,

el soporte por la dispersión de velocidades aumenta. Esto se debe principalmente a las

fusiones mayores secas donde solo una modesta cantidad del momento angular está im-

plicada en el evento de fusión. A pesar de la pauta general, en un grupo significativo

de casos el evento de fusión implica un momento angular espećıfico más alto que en

general, hace al sistema adquirir un soporte rotacional más alto y/ó una forma más

achatada. Estas pautas de evolución están aún presentes cuando estudiamos nuestros

sistemas en proyección, mimetizan las observaciones reales, y aśı podŕıan aparecer en

futuras observaciones. (Caṕıtulo 8).

Todos nuestros resultados sobre las propiedades estructurales y cinemáticas de las

galaxias eĺıpticas indican que la f́ısica ligada a la materia bariónica (disipación espećıfica

y calentamiento gravitacional) juega un papel importante en el origen de las relaciones

fundamentales observadas. Por esta razón hemos intentado profundizar en la historia

de las part́ıculas de gas y en cómo fue acretada por los OTE. Encontramos dos modelos

diferentes de acreción de gas por las galaxias: un modo fŕıo y un modo caliente con-

firmando resultados previos (Kereš et al., 2005, 2008). El modo frió incluye part́ıculas

de gas que no han sido nunca calentadas antes de ser acretadas por la galaxia. En el
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escenario clásico se sugiere que en el modo caliente las part́ıculas de gas son primero

calentadas por choques gravitacionales y después se enfŕıan lentamente formando la ga-

laxia (White & Rees, 1978). Hemos encontrado que la importancia de los dos modos

esta fuertemente relacionada con la masa de la galaxia ya que las galaxias más masivas

son más eficientes al calentar el gas mediante choques gravitacionales. Esto se relaciona

también con el hecho de que estas galaxias tienen un fracción de masa bariónica sobre

masa total dentro del radio virial menor que las menos masivas. (Caṕıtulo 9).

Finalmente, concluimos que las simulaciones estudiadas en este trabajo proporcionan

un escenario unificado donde muchas de las actuales observaciones para galaxias eĺıpticas

pueden ser interrelacionadas, y que este escenario tiene la ventaja de que resulta de

leyes f́ısicas simples actuando sobre unas condiciones iniciales que son realizaciones del

espectro de potencias consistente con las observaciones de anisotroṕıas de la Radiación

de Fondo de Microondas. El escenario presentado en este trabajo debe ser considerado

una aproximación a primer orden del complejo proceso en el que se forman las galaxias

eĺıpticas. En este escenario los procesos f́ısicos subresolución que implican inyección de

enerǵıa han sido incluidos de forma impĺıcita a través de los parámetros del algoritmo de

formación estelar: ρthres y c∗. En un futuro próximo estos procesos f́ısicos serán incluidos

en el código de forma expĺıcita.

B.2 Discusión

El estudio del impacto de las diferentes sistemáticas en nuestras conclusiones se ha

realizado de forma muy cuidadosa. Hemos revisado como los parámetros de formación

estelar, la resolución, los parámetros de modelo cosmológico o el tamaño de la caja de la

simulación pueden afectar nuestros resultados. Tras discutirlos hemos encontrado que:

• Los cambios en los parámetros de formación estelar tienen un gran impacto en las

propiedades de los OTE y sitúan el punto cero de varias relaciones fundamentales

de las galaxias eĺıpticas estudiadas en este trabajo, como el Plano Fundamental o

la relación entre la edad estelar y los descriptores cinemáticos. Sin embargo hemos

encontrado que el algoritmo de formación estelar afecta en diferentes direcciones

estas relaciones en términos de obtener una buena concordancia con los datos ob-

servacionales. Aśı, para una simulación dada, los parámetros de formación estelar

tienen un rango espećıfico estrecho en el que pueden producir objetos reales.

• Hemos realizado varios test de resolución usando simulaciones en las que la re-

solución espacial fue aumentada en un factor dos y la resolución en masa en un

factor ocho. Todos estos análisis han mostrado buena concordancia para las pro-

piedades estructurales, cinemáticas y estelares entre los objetos de tipo eĺıptica de

diferentes resoluciones.
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• Los cambios de los parámetros cosmológicos (ΩΛ, Ωm, Ωb, h) en el marco del

ΛCDM no han producido cambios significativos en las tendencias y resultados

encontrados en las simulaciones eĺıpticas. Sin embargo podemos mencionar que la

cantidad de materia bariónica disponible es uno de los parámetros que determina

el número final de objetos de tipo eĺıptica y el rango en masa de la muestra, que

obtendremos en una simulación. El otro parámetro que tiene un efecto importante

en el número final de OTEs en una simulación es el parámetro de normalización σ8

ya que las simulaciones con un σ8 más alto tienen una entrada de enerǵıa más alta.

Estas simulaciones mimetizan una región activa del Universo (Bryan & Norman,

1998). En estas regiones la evolución a partir de las perturbaciones primordiales

ocurre más rápido y los objetos de tipo temprano son más frecuentes.

• En relación al tamaño de la caja, hemos obtenido muestras de OTE para simula-

ción con Lbox = 10, 20 y 80 Mpc. Como se discute en la Sección 4.2, el tamaño

de Lbox puede afectar los resultados de una simulación porque disminuir Lbox es

equivalente a poner un corte a gran escala en el espectro de potencias. Las simu-

laciones con un tamaño de caja grande son necesarias para conseguir una correcta

convergencia de los resultados para la función de correlación, la función de ma-

sa, etc. Sin embargo esto no implica que las modificaciones de estas propiedades

globales de la estructura a gran escala tenga necesariamente un impacto en las

propiedades internas de los sistemas a pequeña escala (las galaxias y sus halos).

Hemos encontrado que los cambios del tamaño de caja implican que las propieda-

des de agrupamiento cambian y consecuentemente, hay cambios a nivel estad́ıstico

en los distintos caminos de ensamblaje de masa para los OTEs: esto es, la fracción

de OTE ensamblada a través de fusiones de diferentes caracteŕısticas y diferentes

tipos, cambia. Sin embargo, esto no tiene consecuencias significativas en promedio

de los perfiles de masa o la distribución de velocidades en 3D. Es decir, la rela-

jación de las distribuciones de masa y velocidad olvida los detalles sobre cómo se

ha ensamblado la masa o se adquiere la velocidad. Esto no es muy sorprendente

porque el equilibrio de los estados no depende de los caminos que han conducido

a ellos. Manrique et al. (2003) han demostrado anaĺıticamente un resultado simi-

lar en halos de materia oscura. En su modelo el perfil de densidad de los halos

relajados se adapta permanentemente al perfil que se formaŕıa a través de simple

acreción y no depende de su historia pasada de agregación. Como consecuencia

el perfil t́ıpico de densidad de los halos a una masa determinada y a una época

dada es determinado por la tasa t́ıpica de acreción que evoluciona en el tiempo y

depende del modelo cosmológico. Como consecuencia, este modelo predice la exis-

tencia de relaciones invariables en el tiempo entre los parámetros estructurales

que describen estos halos (ver discusión en Salvador-Solé et al., 2005, 2007)
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Finalmente discutiremos brevemente sobre algunos procesos f́ısicos sub-escala que

no han sido considerados expĺıcitamente en nuestras simulaciones: el enriquecimiento

metálico y la evolución estelar (supernovas y agujeros negros). En relación a lo primero,

Mart́ınez-Serrano et al. (2008) han incluido recientemente en el código DEVA la evolu-

ción qúımica. Los resultados preliminares de las propiedades estructurales y cinemáticas

de los objetos de tipo eĺıptica de las simulaciones cosmológicas han mostrado una buena

concordancia con los resultados presentados en esta tesis. Los efectos de las supernovas

y de núcleos galácticos activos (NGA) u otros inputs de enerǵıa diferente a la gravi-

tacional no han sido incluidos expĺıcitamente en estas simulaciones. Hay que destacar

que el papel de las fuentes de enerǵıa discreta de origen estelar en las escalas resueltas

por este trabajo no está aun clara. Argumentos teóricos (Efstathiou, 2000) sugieren que

el efecto de las supernova se hace poco efectivo rápidamente en sistemas con velocidad

de dispersión mayor de 100km× s−1. De hecho, resultados obtenidos mediante simula-

ciones magneto-hidrodinámicas también indican que los efectos de la supernovas en la

formación de galaxias son más importantes para galaxias de baja masa (Scannapieco

et al., 2008). Por otra parte el efecto de los NGA puede ser importante en galaxias con

una alta dispersión de velocidades (Silk & Rees, 1998; Ciotti & Ostriker, 2001) como

las estudiadas en este trabajo. Sin embargo la naturaleza y la dirección en las que es-

te fenómeno afecta a la formación estelar es poco clara (Silk, 2005) y merece la pena

mencionar que hasta ahora los modelos solo incorporan el efecto negativo (inhibición

la formación estelar) (ver Pipino et al., 2009, para una primera aproximación en la di-

rección contraria). Nuestro punto de vista es dejar la f́ısica de las simulaciones lo más

simple posible y avanzar en la comprensión de la conducta del problema simplificado

antes de investigar complejidades adicionales como la supernovas y los agujeros negros.

B.3 Trabajo Futuro

Se dice que en un trabajo como este, el desarrollo nunca termina definitivamente, solo

se detiene momentáneamente. Esto es realmente cierto en este caso; existen un gran

número de temas que pueden verificarse, pulirse, y añadirse. Pero en algún momento la

ĺınea debe detenerse. En el caso de este trabajo, nos hemos parado en el punto en que la

aproximación está comenzando a demostrarse efectiva: tenemos un escenario cosmológi-

co que es capaz de reproducir y explicar algunas de las correlaciones estructurales y

cinemáticas mas fuertes observadas para las galaxias eĺıpticas y que es robusto frente a

cambios en los parámetros cosmológicos, la resolución espacial y en masa y el tamaño

de la caja simulado.

En relación a nuestras herramientas, el desarrollo de una versión paralelizada del

código ha tenido un impacto incréıble, aumentando el número de part́ıculas que pueden

ser simuladas y abriendo la puerta del código DEVA a centros de computación de alto
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rendimiento como el Leibniz Supercomputing Center. También Mart́ınez-Serrano et al.

(2008) acaba de introducir la evolución qúımica en el código DEVA. Esto proporcio-

nará la posibilidad de obtener variables directamente comparables con las observacio-

nes a través del uso de modelos de śıntesis de población estelar. Este hecho, junto con

la ventaja de tener una versión paralelizada del código, ofrece sin duda una incréıble

cantidad de posibilidades para el futuro. En este sentido las herramientas de análisis

desarrolladas en esta tesis son un instrumento sólido que puede ser utilizado como el

tronco principal para el desarrollo de algoritmos y funciones que analicen las futuras

simulaciones.



Appendix C

The Standard Cosmological

Model

C.1 Introduction

Nowadays all our knowledge about the Universe as a whole is joined to form what it is

called the standard cosmological model. The Hot Big Bang Model defines its general

framework and, generally speaking, it could be said that it explains with incredibly

accuracy the thermodynamical homogeneous evolution of the Universe. The theoreti-

cal background of the theory has suffered very little changes since its introduction in

the beginning of the XXth century. However the observational side of cosmology has

suffered a very different evolution. New technologies have made it possible a dramatic

development and we are currently able of discussing a Standard Model of Cosmology

with a fixed set of parameters bounded to at least a few percent accuracy in their values.

This Chapter will cover briefly the theoretical basics of the Hot Big Bang the-

ory, describing the key observational facts that have corroborated it. Firstly in Sec-

tion C.2 we set the basis and notation of the theory. In the following Sections we would

briefly introduce the different observational great successes of the model: the Hubble

law (Section C.3), Nucleosynthesis (Section C.4), the Cosmic Microwave Background

(Section C.5) and the Formation of Large Scale Structure (Section C.6).

C.2 The Hot Big Bang Model

The Hot Big Bang Model is a broadly accepted description for the origin and evolution

of our Universe. The model is based in two theoretical pillars: the theory of General

Relativity (GR) and the Cosmological Principle.

To the extent of our present knowledge, the gravitation at large scales is correctly

described by Einstein’s GR. It is the mathematical structure for cosmology and pro-

vides the geometrical framework for cosmological models. Einstein demonstrated that
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gravitation can be explained by the inertial motion in a curved space-time.

Since then, there have been some theoretical proposals to modify GR, however ob-

servations so far have not been able to discriminate between models. Many theoretical

and experimental progresses are studying the problem; for the time being, the simplest,

original GR remains in force.

Now, we can make use of all the old and new knowledge to describe the background

evolution of the universe, or Hot Big Bang Cosmology. This section will only cover the

basis about the Hot Big Bang model that it is needed as a theoretical context of this

thesis. We refer to Weinberg (1972) for a complete description of General Relativity.

Working inside a general relativistic framework, we need to define a metric tensor,

gµν , in order to characterize the evolution and properties of space-time. Once specified,

the space-time interval between two points is given by:

ds2 = gµνdx
µdxν (C.1)

In general gµν is coordinate dependent and ds2 must be invariant under a change of

coordinates.

Once one is provided with the gravity theory, one should introduce symmetries that

restrict the large variety of possible cosmological models. For this, Einstein introduced

the Cosmological Principle. It states that, on large scales, the universe is spatially

homogeneous and isotropic. So far, its strongest support comes from the observed

isotropy of the cosmic microwave background radiation (CMB). Homogeneity remains

as a hypothesis, however if we assume that we do not occupy a privileged location in

the Universe (Copernican principle), then isotropy leads to homogeneity.

The formulation of the Cosmological Principle applied to what we know of the metric

lead us to the Robertson-Walker metric. The most general metric form describing this

family of cosmological models can be written as follows:

ds2 = c2dt2 −R2(t)

[
dr2

1− kr2
+ r2(dθ2 + sin2θdφ2)

]
(C.2)

where t is the physical cosmic time and the constant k specifies the sign of the spatial

curvature of the universe. The spatial terms have been decomposed into a product of

a time-dependent scale factor R(t) and comoving, time-independent, spherical coordi-

nates r, θ, φ. A comoving observer is an observer who measures zero momentum at

its own location or who sees an isotropic universe. Therefore, the cosmic time t, is

the time measured by the comoving observers which are at rest with respect to the

expansion. Using comoving coordinates allow distances, locations, etc. in an expanding

homogeneous and isotropic cosmology to be related solely in terms of the scale factor.
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One can make the scale factor dimensionless, defining:

a(t) ≡ R(t)

R(t0)
(C.3)

where t0 is the age of the universe today so that a = 1 at the present. It is useful

to keep in mind the relationship between physical, ~r(t), and comoving coordinates ~x,

which applies to any cosmic distance:

~r(t) = a(t)~x (C.4)

In cosmology it is useful to define time and distances in terms of the redshift, z. It

is defined by:

z ≡ R(t0)

R(t)
− 1 =

1− a(t)

a(t)
(C.5)

The historical origin of its name comes from the analogy with the Doppler effect. Taking

into account that t < t0, if R(t0) > R(t), the universe is expanding and gives a red shift

(z > 0) while if the universe is contracting, then R(t0) < R(t), and gives a blue shift.

As we will see in the following section, observational data points to the first case.

The Cosmological Principle also restricts the form of the material content of the

Universe. Since a perfect fluid can be characterized by its isotropy around observers co-

moving with the fluid, the energy-momentum tensor for the material content of Universe

must have the perfect fluid form

Tµν = pgµν + (ρ+
p

c2
)uµuν (C.6)

where p and ρ are respectively the pressure and the energy density measured by a

comoving observer, and uµ is the four velocity of the fluid, uµ = dxµ/ds.

Provided with the energy-momentum tensor, we can now move to the search for the

relativistic field equations. However these equations cannot be derived in any rigorous

sense; all that can be done is to follow Einstein and start by thinking about the simplest

form such an equation might take. To obtain some insight into how this can be achieved,

it is helpful to consider first the weak-field limit (for v << c we have to recover Newton’s

theory) and the analogy with electromagnetism. Here we would just point that in a

similar spirit to Maxwell’s equation for the electromagnetic field Einstein derived the

Einstein’s Field equations (see Peacock, 1999, for the complete argumentation):

Gµν =
8πG

c4
Tµν (C.7)

Here Tµν is the energy-momentum tensor, G is the Newton constant, c the light velocity

and Gµν is known as the Einstein field. He identified the gravitational field with the

metric tensor gµν . Once this relation is made, the Einstein field is characterized with
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what we know about it at weak scale and with what is known of the energy-momentum

tensor. We get,

Gµν = Rµν −
1

2
gµνR =

8πG

c4
Tµν (C.8)

where Rµν is the Ricci tensor, a contraction of the Riemann tensor, Rµν = Rαµαν , with

components:

R00 = 3
R̈

R
; R0i = 0;

Rij = (R̈R+ 2Ṙ2 + 2k)gij (C.9)

and R the Ricci, or curvature, scalar, R = gαβRαβ.

In 1917 Einstein, in an attempt to balance the forces and preserve the previously

accepted picture of a static universe, modified his equation introducing a term, the

cosmological constant Λ, playing the role of a repulsive force (when Λ > 0), allowing

the construction of a static universe.

Gµν + Λgµν =
8πG

c4
Tµν (C.10)

This term can be introduced in Einstein’s equations if we consider also terms of zero

order in second derivatives of the metric. The physical meaning of the cosmological

constant can be seen as the curvature of empty space or, if we move the term to the

right-hand side of the field equations, as the energy-momentum tensor of the vacuum.

Therefore the existence of a cosmological constant dark energy different from zero, is

equivalent to the existence of a non-zero vacuum energy.

Inserting Equations (C.2) and (C.6) into (C.10) lead to the Friedmann equations,

that govern the expansion of space in homogeneous and isotropic models of the universe

within the context of GR.

H2 ≡

(
Ṙ

R

)2

=
8πG

3
ρ− kc2

R2
+

Λc2

3
(C.11)

and

2
R̈

R
+

(
Ṙ

R

)2

= −8πGp+ Λc2 − kc2

R2
(C.12)

where H is called the Hubble parameter. Its present value H0 is the Hubble constant,

usually expressed in terms of the dimensionless number h in the form H0 = 100× h×
km×s−1×Mpc−1. From these two equations and the Bianchi identities1 we can obtain

1These identities are obtained from the symmetries of the Riemann tensor and its covariant derivative.
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a cosmological energy conservation law:

d

dt

(
ρc2R3

)
+ p

d

dt

(
R3
)

= 0 (C.13)

This equation is easily solvable if the equation of state of the fluid is specified. The

various species entering the cosmological models are assumed to satisfy barotropic linear

equations of state of the form p = ωρ and ω = cons. All the cosmological models that

use Friedmann equations and the equation of state are known as Friedmann-Robertson-

Walker models.

In addition, it is useful to define the critical density of the universe as

ρc(t) =
3H2(t)

8πG
(C.14)

This is the energy density, obtained from Equation C.11, corresponding to a flat Universe

(k = 0) and including the cosmological constant as a part of the total energy density

(ρΛ = Λc2/8πG). Using this critical density we can redefine the density parameters as:

Ωi(t) = ρi(t)/ρc(t) (C.15)

for each species, i, that could be present in the universe at different epochs: baryons

(b), dark matter (DM), photons (γ), energy vacuum (Λ) and so on. With the density

parameters we can rewrite Friedmann equations in the following form,

Ω(t) =
∑
i

Ωi(t) = 1− kc2

a2(t)H2(t)
(C.16)

that relates the density parameters to spatial curvature. The parameter Ω(t) is the

value of the total energy density. When we refer to its value at the present epoch, we

write Ω0.

Using the last definition we can rewrite energy conservation (Equation (C.13) as

d(Ωi(t)H
2(t)a3+3ωi)

dt
= 0 (C.17)

allowing us to derive how each of the energy densities evolve with time

Ωi(t)H
2(t)a3+3ωi = cons. = Ωi,0H

2
0 (C.18)

We can also obtain how the scale factor a(t) evolve with time in case one specie domi-

nates the universe:

a(t) =

(
t

t0

)2/3(ω+1)

. (C.19)

Hence we can now calculate how all the different densities have evolved, and which
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one has been more important over time. In Table C.1 we present energy density evolu-

tion for different contents of the universe.

type of content ω ni ≡ 3 + 3ωi
stiff fluid 1 6
radiation and/or ultra-relativistic matter 1

3 4
cold non relativistic matter 0 3
vacuum energy -1 0
“curvature” -1

3 2

Table C.1: Energy density evolution for different contents of the Universe

Consequently, with all these findings we not only know that the evolution of the

Universe depends on what it contents, we also know how each content will affect its

evolution. From C.18 one can immediately see that at the beginning of times, when

a = 0, ρ = ∞. That is, the solution has a singularity at that time, presumably at

the Universe’s beginning. This initial cosmological singularity is also called Big Bang

singularity, and why Hot Big Bang theory has its name. Plugging in (C.18) in (C.16)

we arrive at

H2(t) = H2
0

[∑
i

Ωi,0a
−ni(t) − kc2

a2(t)H2(t)

]
(C.20)

and considering a Universe composed by radiation, no relativistic matter and with

vacuum energy we get

H2(t) = H2
0

[
ΩΛ,0 −

kc2

a2(t)H2(t)
+ Ωm,0a

−3(t) + Ωγ,0a
−4(t)

]
(C.21)

From the last equation we observe that in the general model, relativistic matter

and/or radiation domain the expansion during the primitive Universe, follow by the

non-relativistic matter and the curvature, finally expanding as the cosmological constant

dictates. So one way to characterize a specific Friedmann-Robertson-Walker model is

by just fixing actual values, H0 and all the Ωi,0.

Equation (C.20) is the one usually used to describe the Big Bang Model Universe.

In fact, a set of very different Universes, depending on the values that H0 and all the

Ωi,0 take. Here rather than going to all these possibilities we just resume what all these

models have in common. In the Big bang model, the Universe has been evolving, starting

from an initial, extremely dense, small and hot state, when the size of the universe was

zero and the temperature was infinite. During the first fraction of a second, the initial

temperature was so high as to allow equilibrium between matter and radiation. During

the subsequent expansion the density and temperature fall and particles were moving

with non-relativistic energies. The processes of formation of particle pairs gradually

gave their way to those of nucleosynthesis and the formation of the first light element
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abundances. Finally, the temperature was lowered to a point to permit the formation

of structures through the action of gravity, responsible for the great concentrations of

mass that would later form the stars and the galaxies. The spatial geometry of these

models can either be positively curved, k > 0 (like the surface of a sphere), flat, k = 0

(like Euclid’s space) or negatively curved, k < 0 (like a saddle). In the first case the

volume of the Universe is finite, in the other two it can be infinitive.

Up to now we have seen all the theoretical development of the Hot Big Bang Model.

But, why it has become our Standard Cosmological Model? Simply because it gives very

good answers to a variety of independent observational facts. The four key observational

successes of the standard Hot Big Bang model are the following: The Expansion of

the Universe, Nucleosynthesis of the light elements, Existence of Cosmic Background

Radiation and the Formation of Large Scale Structure. The Big Bang model makes

accurate and scientifically testable hypotheses in each of these areas and the remarkable

agreement with the observational data gives us considerable confidence in it.

C.3 The Expansion of the Universe: The Hubble Law

In 1929 E. Hubble found the empirical Hubble law

z = H0dL (C.22)

linearly relating the redshift of galaxies to their luminosity distance. The luminosity

distance is defined as dL =
√
L/4πF , where L is the absolute luminosity of the source

and F its apparent luminosity, i. e. the flux of energy received in the collecting surface

of the telescope. So, luminosity distance dL is defined as such that a source of absolute

luminosity L, located in a static Euclidean space, would produce a flux F at distance

dL.

In the approximation in which galaxies are comoving, the proper distance to a given

galaxy scales with a(t), and consequently its recession velocity V is related to its physical

distance d at a given time by

V = Hd (C.23)

So the Big Bang model gives as straightly the empirical Hubble Law! We can even

go one step further, using instead of Euclidean metric the Robertson-Walker metric,

which we know is the one that rules at large scales. It follows that the relation between

dL and the redshift parameter z is nonlinear. To second order this relation takes the

form

H0 dL(z) = z +
1

2
(1− q0)z2 + · · · (C.24)

where q = −RR̈/Ṙ2 is the deceleration parameter of the Universe and q0 its present

value. We can also write it, from Friedmann Equations (C.11-C.12), as a function of
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Figure C.1: Hubble law for SNe Ia: MLCS2k2 SN Ia Hubble diagram. SNe Ia from
ground-based discoveries in the gold sample are shown as diamonds, HST-discovered
SNe Ia are shown as filled symbols. Overplotted is the best fit for a flat cosmology.
Ωm = 0.29, ΩΛ = 0.71. Inset: Residual Hubble diagram and models after subtracting
empty universe model. Figure taken from Riess et al. (2007)

density parameters, q = Ωm/2 + Ωγ − Ωk. It follows then from RW metric, i. e. from

Cosmological Principle, that the empirical Hubble law can be expected to be true only

for z � 1. On the other hand for z � 1, the approximate equalities d ≈ dL(z) and

V ≈ z hold. Thus empirical and theoretical Hubble laws coincide in this regime. In this

weak sense checking Hubble’s law is also a check of the RW metric.

The accurately check of Hubble’s law, measuring H0 and eventually going deeper in

redshift to determine q0, has been a central research program in cosmology since 1929.

The key observational tools for this endeavor are standard candles: luminous sources

whose absolute luminosity has been properly calibrated. The most important ones, for

being the most accurate are: Cepheids (local distance scale, Freedman et al., 2001),

global properties of galaxies as The Fundamental Plane, the Faber-Jackson relation or

the Tully-Fisher relation (up to 300 Mpc, Sakai et al., 2000; Bernardi et al., 2002) &

Supernovas (large and very large scale, ∼400 Mpc or more, Riess et al., 2007; Kowalski

et al., 2008). Also Sunyaev-Zel’dovich effect in clusters (Reese et al., 2002) and gravita-

tionally lensed images of distant quasars (Outram et al., 2004) are starting to give some

constrains on cosmological models. As observational methods improved we are capable

of reaching higher redshifts, mainly thanks to Supernova data, constraining H0 and

specially q0 with lower errors. Last results can be seen in Kowalski et al. (2008). From

this work, here we show first a Hubble diagram C.1 and the cosmological constraints on

Ωm, ΩΛ obtained just from Supernova data.

Relating with the Hubble parameter, it is possible to learn a good deal about the
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past and future expansion of universe by simple inspecting Friedmann equations, even

without specifying a definite equation of state. Since at present R > 0 by definition,
Ṙ
R > 0 because what we see are redshifts and no blueshifts and as long as ρ+3p remains

positive, the acceleration R̈/R is negative. Therefore it follows that the curve of R(t)

versus t must be concave, and must have reached R(t) = 0 at some finite time in the

past. If we take R̈ = 0 between this moment and now, we get that R(t) = R(t0)t/t0 and

so the age of the universe would be just equal the Hubble time, H−1
0 . If we take the more

realistic assumption of R̈ < 0, we get a lower limit to the age of the Universe. t0 must

be less than the Hubble time t0 < H−1
0 . So, in all Friedmann-Robertson-Walker models,

measuring the current value of Hubble parameter, H0, also give us an idea of what is

the age of the universe. Therefore, for example, with H0 = 72± 8km× sec−1 ×Mpc−1

(Freedman et al., 2001), we get a minimum age for our Universe of t0 = 13, 97Gyr.

C.4 Nucleosynthesis

Another important point which Big Bang model has to give some answer is the origin of

chemical elements and the abundances that we observe nowadays. G. Gamow was the

first to propose a Big Bang nucleosynthesis in the early 50’s, proposing some theoretical

abundances of light elements that fit incredibly well with observations and that have

suffered little variations since then. He also used the observed helium abundance to

predict the existence of relic radiation in the microwave band. However these predictions

require that, in order to match the observational data, the ratio of the number of baryons

per photon, η, in the early Universe have a very low value. Since the discovery of the

3K background radiation (see next section) and the subsequent measure of this ratio,

Gamow’s ideas have been elaborated into one of the key ingredients of the big bang.

The very early Universe in the Big Bang Model is too hostile environment for nuclei.

When the temperature stays above a few MeV (typical nucleon binding energy) photons

will destroy any existing nuclei. Because of this reason, nucleosynthesis has to wait until

the Universe has cooled down enough, approximately below 0.1MeV . At this temper-

ature deuterons are able to survive transforming into helium. Finally some 7Li is also

formed. Why not higher nuclei? The reason is that the Universe is cooling down very

fast and Coulomb barriers are higher for heavier nuclei, making cross-sections decline

rapidly as temperature decreases. The heavier elements, of which we are partly made,

were created later in the interiors of stars and spread widely in supernova explosions.

The major interest of this theory is that it only needs one cosmological number, η, the

number of baryons per photon

η ≡ nb
nγ

= 2.68x10−8(Ωbh
2) (C.25)

where nb is the density of baryons and nγ is the density of photons. Ωb is the contribution
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of baryonic particles to total non-relativistic matter, Ωb = Ωmfb. In this sense Big

Bang Nucleosynthesis (BBN) gives us independent constrains on Ωb, therefore on Ωm.

As we will see, the exact value of fb is not yet clear but it seems quite confirmed that

is not one (see below C.6). It is important to note that given η, all the abundance

predictions are based in standard particle physic. Therefore, one feature of BBN is that

the physical laws and constants that govern the behavior of matter at these energies

are very well understood, and hence BBN lacks some of the speculative uncertainties

that characterize earlier periods in the life of the universe. Another feature is that the

process of nucleosynthesis is determined by conditions at the beginning of this period of

the life of the universe, making what happens before irrelevant. Theoretical calculations

for these nuclear processes predict abundances for: H, 2D, 3He, 4He of 4Li. One of

Figure C.2: Nucleosynthesis abundance predictions. Abundance predictions in function
of τ , from Cyburt et al. (2003).

the most important, in terms of confirming Big Bang Model, is the abundance for 4He.

Nucleosynthesis predicts that about a quarter of the Universe consists of 4He, a result

which is in great agreement with current stellar observations. We remit the reader to

Iocco et al. (2008) for a complete revision of the area and the last observational results.
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C.5 Existence of a Cosmic Microwave Background

Another important prediction of the Big Bang model, first addressed by Gamov (1946),

is the existence of a Cosmic Microwave Background (CMB). If the universe was once

very hot and dense, the photons and baryons would have formed a plasma, i.e., a gas

of ionized matter coupled to the radiation through the constant scattering of photons

off ions and electrons. As the universe expanded and cooled it comes a point when

the radiation (photons) decoupled from the matter. From this time onwards, radiation

was effectively unable to interact with the background gas; it has propagated freely ever

since, while constantly losing energy because its wavelength is stretched by the expansion

of the Universe. We can model the time last scattering by a visibility function, which

measures the probability that a particular photon last scattered in a redshift interval

dz. Conveniently, this proves to be well approximated by a Gaussian at mean redshift

z ≈ 1100 with width ∆z ≈ 80, pretty much independent of all cosmological parameters

(Jones & Wyse, 1985). Originally, the radiation temperature was about 3000 degrees

Kelvin, whereas today it should has fallen to only 3K.

The CMB radiation was discovered in 1965, by Penzias and Wilson. Currently the

best information on the spectrum of the CMB comes from the FIRAS instrument on

the COBE satellite (Fixsen et al., 1996): CMB spectrum is that of a nearly perfect

blackbody with a temperature of 2.725± 0.002 K (See C.3).

Figure C.3: CMB: Black Body radiation. Measurements of the spectrum of CMB from
COBE satellite Fixsen et al. (1996).

This result shows that the temperature of the CMB is almost the same all over the

sky. Thus the microwave sky is extremely isotropic. But there is also a great deal to

be learned from this ”almost” and the distribution of microwave background in angle.

As we will see in the following section these anisotropies can be related with the for-

mation of galaxies and clusters. The origin of anisotropies can be due to a various set

of physical processes that: gravitational (Sachs Wolfe) perturbations, intrinsic (adia-
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batic) perturbations, velocity (Doppler) perturbations and scattering along line-of sight

(Rees-Sciama effect, Sunyaev-Zeldovich effect). For a further insight see e.g. Bond

et al. (1997). All these dependencies make the CMB fluctuations very dependent of

the cosmological model. The study of CMB fluctuations has subsequently blossomed

into a critical tool for pinning down cosmological models. As the CMB temperature

distribution in the sky, being a function defined on a sphere is most naturally analyzed

through a spherical harmonics expansion

T (θ, φ) =
∑
lm

almYlm(θ, φ) (C.26)

The monopole component gives the mean temperature of CMB, 2.725 ± 0.002. The

largest anisotropy is the ` = 1 dipole term interpreted as the result of the Doppler

shift caused by the Solar system motion relative to the CMB. Once the monopole and

the dipole have been removed from the expansion, we are left with the CMB intrinsic

anisotropies which are of the order of 10−5, or below in all angular scales, and contain

the imprints of the early Universe physics at radiation-matter decoupling. Most of the

cosmological information is contained in the two point temperature-temperature (TT)

correlation function. This quantity is defined by averaging the product of the fractional

temperature deviations in directions ~n and ~n′ over the sky, and expanding the result in

Legendre polynomials

C(θ) ≡ 〈 ∆T (~n)

T

∆T (~n′)

T
〉 =

∞∑
`=0

2`+ 1

4π
ClPl(cos θ) (C.27)

The expansion coefficients Cl, when represented as function of ` (more suitably log `)

give the so-called angular power spectrum which is the key function in comparing theory

with observations. Distinct physical processes (some at very different scales) are linked

with a specific range of Cl coefficients. In this sense, a set of hypotheses on physical

processes lead to predictions on the values of Cl coefficients, therefore predictions on

the power spectrum function. On the other hand we have that these processes are in-

trinsically related with cosmological parameters so, hypotheses just mentioned before

are hypotheses on the values of cosmological parameters. Therefore studying the power

spectrum is the way in which cosmological model can be deduced from CMB observa-

tions. A more complete description of physics contained in Cl can be found in Peacock

(1999).

Electron-photon Thomson scattering at the last scattering surface transforms anisotropies

into CMB photons polarization. The analysis of polarization leads to four new non-

vanishing two sky points correlation, with its corresponding angular spectra (TE power

spectrum). Inclusion of polarization measurements help to better constrain some of the

cosmological parameters, by probing the ionization history of the universe, therefore
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better constraining the optical depth at reionization and breaking degeneracies of this

with other parameters. The theoretical and observational analysis of these spectra lies

at the present frontier of CMB research (Komatsu et al., 2009).

The first map of CMB anisotropies was obtained with COBE satellite. After COBE

a series of ground and balloon based measurements: ARCHEOPS, BOOMERANG,

DASI, MAXIMA, VSA, CBI, ACBAR, have been carried out to improve the quality

of temperature anisotropies data. The most recent advance has been the five years

of operation results from NASA’s WMAP (Wilkinson Microwave Anisotropy Probe,

Dunkley et al., 2009; Komatsu et al., 2009). This work corresponds to a twofold full

coverage of sky and provides a much more precise anisotropies map and by itself it

definitely make some strong constrains on several cosmological parameters.

Parameter Mean (68% confidence range)

Total density Ωtot 1.09+0.01
−0.085

Dark energy density ΩΛ 0.742± 0.030
Baryon density Ωbh

2 0.0441± 0.0030

Hubble constant h 0.719−0.026
+0.027

Galaxy fluctuation amplitude σ8 0.796± 0.036

Table C.2: Cosmology from CMB anisotropies measured by WMAP. Recommended
parameters values derived from WMAP data only (Dunkley et al., 2009).

C.6 Formation of Large Scale Structure

Although the isotropic microwave background indicates that the universe in the past was

extraordinarily homogeneous, we know that the universe today is far from homogeneous:

there are regions in which matter is strongly clumped forming galaxies, clusters and even

larger structures, whereas at the same time, we can also find almost empty regions with

very low densities.

So, the standard Hot Big Bang model also provides a framework in which to under-

stand the collapse of matter to form galaxies and other large-scale structures observed

in the Universe today. These structures are expected to arise from very small primordial

inhomogeneities. When the temperature had fallen to such an extent that the energy

density of the Universe began to be dominated by massive particles, rather than the

light and other radiation which had predominated earlier, gravitational forces between

the massive particles could begin to take effects, so that any small perturbations in their

density would grow. These inhomogeneities can be characterized as

δ(~x) ≡ δρ(~x)

ρ̄
=
ρ(~x)− ρ̄

ρ̄
(C.28)
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where ρ̄ is the average density of the Universe, and ρ(~x) is the density of the Universe

at the point ~x, and they must have left some trace as temperature anisotropies in the

microwave background.

In the search of these traces a popular statistical characterization of inhomogeneities

in the distribution of cosmic structures is provided by a two-point correlation function, ξ,

which describes the expected excess fluctuations with respect to a uniform distribution:

ξ(r) = 〈δ~xδ~x+~r〉 (C.29)

where the symbol 〈〉 indicates the average over all the pairs of points at separation r.

It is often convenient to consider building up a general field by superposition of

many modes. So density contrast is commonly expanded into a Fourier expansion

δ(x) =
V

(2π)3

∫
vol
δke
−ik·xd3k (C.30)

δ(k) =
1

(V )

∫
vol
δxe
−ik·xd3x (C.31)

In this context we define the Fourier transform of ξ as the power spectrum P (k)

P (k) ≡ 〈|δk|2〉 (C.32)

In earlier literature, attention normally was focused on determining the two point

correlation function, ξ(r). We have seen the definition of this for a continuous field

such as the matter-density distribution Equation (C.29), for a discrete field, such as a

collection of galaxy locations, the definition must be phrased more carefully. The galaxy

two-point correlation function ξgal can be defined in terms of the probability of finding

two galaxies within small volumes dV1 dV2 a distance r apart:

Prob = n2 (1 + ξgal(r)) dV1dV2 (C.33)

where n is the mean galaxy number density. Notice that for a random distribution ξgal(r)

is 0. One thing we have to keep in mind is that while we are measuring observable matter

what we really would like to know is about the distribution of all matter. There is no

a priori reason why galaxy distribution should be a good tracer of mass distribution

in the Universe. Indeed, observations show that it definitely cannot be; the correlation

functions for, to give an example, galaxies selected optically and galaxies selected in

the infrared are different and hence clearly cannot both trace the mass distribution

accurately. This effect is known as bias in the galaxy distribution, and it seriously

impairs our abilities to use it to constrain the matter spectrum. The statistical analysis

of galaxy bias is based on the key idea of peak biasing. In this scenario, galaxies are
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fairly rare objects forming from peaks in the matter distribution. The rarer the peaks,

probability of a peak being near another peak is enhanced (Bardeen et al., 1986).

Measuring the current Power Spectrum is one of the most challenging features in

modern cosmology. It tells us all that there is to know about statistical properties of

the density field. During last years scientist have done a great effort in improving the

accuracy of power spectrum measurements. Nowadays, for the power spectrum we have

a complete set of independent measurements that shows a general good agreement with

this scenario (Seljak et al., 2005; Massey et al., 2007; Komatsu et al., 2009).

Figure C.4: Power Spectrum measurements. Measurement of the Power Spectrum from
a set of different observables: CMB, SDSS, Weak lensing and Lα Forest (Tegmark et al.,
2004). Solid line correspond to a Ωm = 0.28 h = 0.72 Ωb/Ωm = 0.16 Universe.

The Dark Matter

CMB anisotropies not only confirm that in the total amount of matter that encloses the

Universe (∼ 25% of the total energy), just ∼ 20% is baryonic matter (see Table C.2).

The Ωb value obtained from CMB is also in concordance with the nucleosynthesis theory

(see Section C.4). Therefore everything point to a non baryonic dark matter to make
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the total of matter that observations require. Moreover we have more cosmological

probes. We know from measurements of the cosmic microwave background that the

Universe was extraordinarily homogeneous in the past. At the present epoch, however,

the Universe is no longer particularly homogeneous: it contains galaxies, clusters of

galaxies, superclusters etc. This large scale structure is believed to arise from small

primordial inhomogeneities that grow via gravitational instability. However ordinary

baryonic density perturbations cannot begin to grow because of radiation pressure until

photon decoupling occurs at a temperature of around Tdec ∼ 3000K, corresponding to

a redshift of zdec ∼ 1100. But this is too late, perturbations which have amplitude of

order δ ∼ 10−5 (as inferred from the anisotropies of the cosmic microwave background)

do not have enough time to grow into galaxies, where δ ∼ 103−4. This suggests that

inhomogeneities begin to grow prior to photon decoupling. This is one role that non-

baryonic dark matter is expected to fill, it should be weakly coupled to the ordinary

particles in the plasma so that density perturbation growth can begin prior to photon

decoupling. In the context of the Big Bang Model is easy to think in a weekly interacting

relic particle to make the role of dark matter.

On the other hand, in addition of all these cosmological evidences, we have also some

solid astrophysical evidences. As dark matter consist in matter particles that cannot be

detected by their emitted radiation, its presence should be inferred from gravitational

effects on visible matter such as galaxies, groups and clusters. The first of all these

indirect proofs was made by Zwicky (1933) studying the velocity dispersions of Coma

Cluster and obtaining higher Mass-to-light ratios than expected if this object was just

formed by baryonic matter. This kind of study in clusters has been improved since then,

showing basically the same conclusions. Masses of clusters have been also calculated

from X-Ray Hot gas (Arnaud, 2005) and from gravitational lensing (Squires et al., 1996)

confirming this result. Also just analyzing total luminosity density values, and taking

into account a minimum limit for ωm (from nucleosynthesis, for example) leads us to

mass-to-light ratios that suggest the existence of some more matter than normal stellar

populations (Efstathiou & Rees, 1988). Another important evidence is the existence

of flat rotation curves in galaxies rather than the Keplerian fall-off rotation curve. An

example is showed in Figure C.5. More details can be found in (Corbelli & Salucci,

2000; Jimenez et al., 2003). See also (Romanowsky et al., 2003) for some surprising

results on this subject. There is also ample evidence for dark matter in dwarf galaxies

(Coĺın et al., 2004).

By all this, the existence of dark matter is a very solid state in modern cosmology.

However what particle, or particles, forms dark matter and which are their properties is

not a closed question. Although we can make some interesting constraints. As we just

mention dark matter has enormous implications in the formation of structures because it

determines the final density distribution at different scales. Taking into account this fact,
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Figure C.5: Rotation curve: Dark matter. This rotation curve implies that near 90%
of the galaxy mass cannot be seen. Figure from Foot (2004).

usually all particle candidates classify in three generic types: Hot Dark Matter (HDM),

Warm Dark Matter (WDM) and Cold Dark Matter (CDM). Hot dark matter would be

particles with very small mass (∼ eV ) that travel with relativistic velocities because they

would have decoupled from radiation when relativistic. Fast moving particles, however,

cannot clump together on small scales and, in fact, they can escape from overdense

regions into underdense ones, erasing the density fluctuations on scales smaller than

the free-streaming scale λfs. Typical values are λfs ∼ 40Mpc. In the hot dark matter

paradigm, popular in the early eighties, structure forms by fragmentation (top-down),

with the largest superclusters forming first in flat pancake-like sheets and subsequently

fragmenting into smaller pieces like our galaxy. On the opposite side, if the relic particles

decouple when they are nonrelativistic, mass can apparently be as large as desired. If

decoupling occurs at very high redshift, the horizon scale at that time is very small

and so negligible damping occurs through free streaming. Structure formation in a

CDM universe is then a hierarchical process in which nonlinear structures grow via

the merger of very small initial units. There is also a middle point approach known

as warm dark matter model originally introduced to solve some apparent problems

of the CDM model. To reduce the present-day velocity while retaining particles that

decouple when relativistic, or in other words, to retain low-mass particles ( 1− 10keV )

while still allowing a short of hierarchical scenario. However latest observations go in

the direction of CDM model predictions (Bullock et al., 2000; Kochanek & Dalal, 2003;

Primack, 2004; Tegmark et al., 2004; Pratt & Arnaud, 2005; Pointecouteau et al., 2005).

Here we present Figure C.6.
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Figure C.6: Cold Dark Matter vs Hot Dark Matter
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C.7 Conclusions

Through this Chapter we have presented a general view of the Big Bang Model and its

observational pillars. The union of these ideas conform what is known as the standard

cosmological model which, during last decades all observational data have consolidated.

But, although consolidated, we had a wide set of possible Universes very different one

from each other. In the past few years, with the advent of new generation of observa-

tional projects (WMAP, SN projects, Hubble telescope, SDSS, 2dF) we have entered

in what has been called ”precision cosmology”. In this new era we are being able of

ruling out false Universes by constraining all cosmological parameters. We have seen

that all these experiments, one by one and independently, offer results that consolidate

the standard model and reduce the number of possible Universes. The fact that all

these experiments agree in the most probable model is fascinating and has lead us to

what is call the concordance model. This model corresponds with a flat Universe, with

cosmological constant and formed by baryonic matter and cold dark matter. Combin-

ing results from the different experiments we can even achieve more precision in the

cosmological parameters (Dunkley et al., 2009; Komatsu et al., 2009). Table C.3 shows

best fit cosmological parameters using CMB (WMAP and small scale measurements),

SDSS and SNIa data:

Parameter Mean ± 68% confidence range

Total density Ω 1.0052± 0.0064
Dark energy density ΩLambda 0.721± 0.015

Baryon density Ωb 0.0462± 0.0015
Optical depth τ 0.084± 0.016

Spectral index ns 0.960+0.014
−0.013

Galaxy fluctuation amplitude σ8 0.817± 0.026
Hubble constant h 0.701± 0.013

Age of the Universe t0 (13.73± 0.12)x109 years

Table C.3: Some of the derived cosmological parameters using WMAP+SN+BAO data,
see Dunkley et al. (2009).

So we are living in a Lambda-Cold Dark Matter ΛCDM Universe. This model

is able to explain a huge amount of precise and independent observational data as

cosmic microwave background observations (WMAP), as well as large scale structure

observations (2dF,SDSS) and supernovae observations of the accelerating expansion

of the universe (SN). However, although ΛCDM model has been consolidated with

unexpected robustness and precision, there are still major open questions that need to

be answered and are far beyond the scope of this thesis. Some examples are, the origin

of the cosmological constant, the dark matter particle and the formation of the Hubble

sequence.





Appendix D

Data Tables

This Appendix presents all the fundamental structural and kinematical parameters of

the different ELO samples studied in this thesis. In Table D.1 parameters discussed

in Chapter 6 can be found. Table D.2 includes the shape and rotational parameters

considered in Chapter 7. Values for these variables at higher redshifts, examined in

Chapter 8, can be found in Tables D.3, D.4 (z = 0.5 ELO samples), D.5, D.6 (z = 1

ELO samples) and D.7, D.8 (z = 1.5 ELO samples).
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T., Munn J.A., Nichol R., Okamura S., Schneider D.P., Thakar A.R., & York D.G.,

2003a. Early-Type Galaxies in the Sloan Digital Sky Survey. I. The Sample. AJ,

125:1817–1848.

Bernardi M., Sheth R.K., Annis J., Burles S., Eisenstein D.J., Finkbeiner D.P., Hogg

D.W., Lupton R.H., Schlegel D.J., SubbaRao M., Bahcall N.A., Blakeslee J.P.,

Brinkmann J., Castander F.J., Connolly A.J., Csabai I., Doi M., Fukugita M., Frie-

man J., Heckman T., Hennessy G.S., Ivezić Ž., Knapp G.R., Lamb D.Q., McKay
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stander F., Csábai I., Fukugita M., Ivezic Z., Munn J.A., Nichol R.C., Padmanabhan

N., Thakar A.R., Weinberg D.H., & York D., 2003a. Stellar masses and star formation

histories for 105 galaxies from the Sloan Digital Sky Survey. MNRAS, 341:33–53.

Kauffmann G., Heckman T.M., White S.D.M., Charlot S., Tremonti C., Peng E.W.,

Seibert M., Brinkmann J., Nichol R.C., SubbaRao M., & York D., 2003b. The de-

pendence of star formation history and internal structure on stellar mass for 105

low-redshift galaxies. MNRAS, 341:54–69.

Kawata D. & Gibson B.K., 2003. Multiwavelength cosmological simulations of elliptical

galaxies. MNRAS, 346:135–152.

Kawata D. & Gibson B.K., 2005. Self-regulated active galactic nuclei heating in elliptical

galaxies. MNRAS, 358:L16–L20.

Kelson D.D., Illingworth G.D., van Dokkum P.G., & Franx M., 2000. The Evolution

of Early-Type Galaxies in Distant Clusters. III. M/LV Ratios in the z=0.33 Cluster

CL 1358+62. ApJ, 531:184–199.

Kelson D.D., van Dokkum P.G., Franx M., Illingworth G.D., & Fabricant D., 1997.

Evolution of Early-Type Galaxies in Distant Clusters: The Fundamental Plane from

Hubble Space Telescope Imaging and Keck Spectroscopy. ApJ, 478:L13+.

Kennicutt Jr. R.C., 1998. The Global Schmidt Law in Star-forming Galaxies. ApJ,

498:541–+.
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G., Coe D., Illingworth G.D., Hartig G.F., & Clampin M., 2005. The Nature of Blue

Cores in Spheroids: A Possible Connection with Active Galactic Nuclei and Star

Formation. ApJ, 620:697–702.

Merritt D., Graham A.W., Moore B., Diemand J., & Terzić B., 2006. Empirical Mod-
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of Halo Inside-Out Growth for the X-Ray Properties of Nearby Galaxy Systems within

the Preheating Scenario. ApJ, 628:45–60.
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Zhang Y.Y., Böhringer H., Finoguenov A., Ikebe Y., Matsushita K., Schuecker P., Guzzo

L., & Collins C.A., 2006. X-ray properties in massive galaxy clusters: XMM-Newton

observations of the REFLEX-DXL sample. A&A, 456:55–74.

Zhao D.H., Mo H.J., Jing Y.P., & Börner G., 2003. The growth and structure of dark

matter haloes. MNRAS, 339:12–24.

Zwicky F., 1933. Die Rotverschiebung von extragalaktischen Nebeln. Helvetica Physica

Acta, 6:110–127.


	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Theoretical Issues
	Approach
	Overview

	I Theoretical Framework
	Method: Self-Consistent Hydrodynamical Simulations
	Introduction
	Description of the Method
	Algorithms
	Initial Conditions
	Additional Physics

	State of the Art
	The Deva Code
	Gravity and Gas Dynamics
	Additional Physics

	Summary

	Formation and Evolution of Elliptical Galaxies
	Introduction
	Elliptical Galaxies
	Structure and Kinematical Profiles
	Parameter Correlations: The Fundamental Plane
	Observational Problems, Theoretical Improvements

	Monolithic Collapse vs Hierarchical Merging
	Different Observational Constraints

	Summary


	II Simulations and Tools
	Analysis of the Simulations
	Introduction
	Simulations runs under study
	Galaxy-like objects in the simulations
	Building Elliptical-Like-Objects (ELO) Samples
	The halo and stellar scales of an ELO

	Calculating global properties
	The halo scale properties
	The stellar scale properties
	The observational stellar scale properties

	Summary


	III Results
	Ellipticals at z = 0: Profiles
	Introduction
	Structure Profiles
	Three Dimensional Structure for Gas Particles
	Stellar and Gaseous Particle Orbits
	Dark Matter Profiles
	Baryonic Three-Dimensional Mass Density Profiles
	Total Three-Dimensional Mass Density Profiles
	Projected Stellar Mass Density Profiles

	Kinematic Profiles
	Three-Dimensional Velocity Distributions
	Stellar LOS Velocity and Velocity Dispersion Profiles

	Conclusions

	Ellipticals at z = 0: Fundamental Parameters
	Introduction
	Fundamental Parameters: The Fundamental Plane
	Fundamental Parameters: Halo Scale
	Fundamental Parameters: Baryonic Object Scale
	Fundamental Parameters: Projected Baryonic Object Scale
	The Origin of the Tilt of the Fundamental Plane
	The Scatter of the Fundamental Plane

	The Photometric Plane
	The Hyperplane in 4D

	Stellar Population Properties
	Robustness of Results and Beyond: Test Samples
	Changes in the Cosmological Model
	Possible Resolution Effects
	Box Size Effects

	Discussion and Conclusions
	Main Results
	Summary


	Ellipticals at z = 0: The Rotation versus Shape Relation
	Introduction
	The Shape of ELOs
	The Rotation of ELOs
	Rotation vs. Shape: 3D and 2D Results
	Consistency Checks
	Conclusions

	Evolution of Ellipticals since z<1.5
	Introduction
	The Fundamental Plane
	The Photometric Plane Evolution
	Other Structural and Kinematical Parameters
	The Rotation versus Shape Diagram
	Shape and Kinematics of Elliptical Galaxies: Evolution Due to Merging at z<1.5

	Conclusions

	Galaxy Formation and Evolution from DEVA simulations
	Introduction
	Insights into ELO Assembly
	The Two Phase Scenario

	Accreting and Expelling Gas in ELOs
	Hot Gas in ELOS
	Baryon Fraction
	When and Where is the Hot Gas Heated?

	Conclusions


	IV Conclusions and Outlook
	Conclusions and Outlook
	Summary and Conclusions
	Discussion
	Outlook


	V Appendix
	Introducción
	Motivación y objetivos
	Aspectos teóricos
	Método
	Estructura de la tesis

	Conclusiones y trabajo futuro
	Conclusiones
	Discusión
	Trabajo Futuro

	The Standard Cosmological Model
	Introduction
	The Hot Big Bang Model
	The Expansion of the Universe: The Hubble Law
	Nucleosynthesis
	Existence of a Cosmic Microwave Background
	Formation of Large Scale Structure
	Conclusions

	Data Tables
	Published Articles

	Bibliography

