LA

UNIVERSIDAD AUTONOMA
| DE MADRID |

Departamento de Fisica Tedrica

Structure, Kinematics and Evolution of
Elliptical Galaxies from

Hydrodynamical Simulations

Memoria presentada para optar al grado
de Doctor en Ciencias Fisicas por
José Onorbe Bernis

Dirigida por Rosa Dominguez Tenreiro

Madrid, Marzo 2009






“Me lo contaron y lo olvidé.
Lo vi y lo recordé.

Lo hice y lo aprendi.”
Confucio, 551 a.C. - 479 a.C.

“I hear and I forget.
I see and I remember.
I do and I understand.”

Confucius, 551 B.C. - 479 B.C.






A mis padres

y a mi hermana






Agradecimientos g

Agradecimientos

Si ahora lees este texto pagano es probable que me seas cercano, y que hallamos
compartido otonio, invierno, primavera o verano. No te preocupes, no emplearé tu tiempo
en vano y te hablaré yendo al grano. El librillo que tienes en mano retine mi trabajo
cotidiano, desde un tiempo, ahora lejano, compartido mas o menos sano. Por eso me
gustaria de veras que seas quien seas, no dejes esto a medias y te leas el resto de este
pequeno texto, que presento solo como gesto honesto y grita al viento mi mas profundo
agradecimiento para todo el regimiento al que, no miento, le pertenece un trozo de todo
esto. Y es que ahora que tras el sacrificio, observo desde la cima del precipicio, confirmo,

ya sin resquicio, que en estos anos de ejercicio, toda mi gente fuisteis mi mayor beneficio.

Agradecer a Rosa lo primero, la oportunidad de iniciar el sendero, por contagiar ese
entusiasmo sincero y por su consejo certero, ante cualquier quebradero.

Sigo con Héctor, genio y figura, primer compafero de esta aventura, mentor de
informética pura, en torno a la que, por ventura, se forjé6 una amistad que aun dura.
Fran fue mi siguiente colega del frente en esta guerra tan diferente. Y aunque DEVA es
enemigo potente, compartimos congreso, casa, cena caliente pasando algtin rato mas que
decente. Agradecer también a Arturo el sacarme de algin apuro pero sobretodo aseguro
no olvidar en el futuro donde encontrar arroz de lujo puro. Cesar, penultimo fichaje,
gran fisico y mejor personaje, compartimos amistad, en cada comida y viaje, paciente
para escucharme en algin momento salvaje. Con M? Angeles y Latifa estos anos, he
compartido buenos ratos, charlas, consejos, amanos, combatiendo el desengano, creo
que con bastante buen apano. A Paola, mas que digna heredera, que acaba de lanzarse
a la trinchera, le deseo de forma sincera que, mientras sube su escalera, disfrute de la
carrera tanto o mas que este calavera.

Al resto de gente que con su trabajo hizo posible este fajo, le debo un minimo agasajo.
Gracias a JuanCarlos, Lola, José y demas personal, incluido el centro computacional
que me ayudo6 en mas de un berenjenal. Incluso al Ministerio de Educaciéon y Ciencia
que me dio algo de opulencia en esto anos de fisica y demencia.

Gracias también a todos los comensales: Frabice, Sara, Nacho y el resto de ocasio-
nales por los debates reales y las sobremesas sociales, que salvaron el dia a dia con
sensaciones geniales.

Otra prueba de mi suerte de primera fue que, persiguiendo esta quimera, me siguieron
amigos de la carrera: Ernesto, amigo fuera donde fuera, y gran anfitrién en mi visita
extranjera, Nico (el Mar de Bering nos espera), Mariluz, colega astrofisica y genial
companera, y Maria con su filosofia de la manzana y la pera. También tuve el honor
de compartir buen humor, despacho (y mucho calor) con Enrique, genial conversador,

Fouad, todo un senor, Inaki, (desayunos con sabor) y Javi (jadelante chacho!, jten



h Agradecimientos

valor!). Ademds rondando por despachos y pasillo, encontré buena gente a porrillo. Con
Matteo ser amigos fue sencillo (la siguiente nada de oreja, solomillo). Alberto a base de
no dar cuartelillo, enseguida me tuvo en el bolsillo. Conoci al genial LuisFer (gracias
por todo crack), a Jorge y Jorge junior, un simpético pack, y a Ignacio, Sara y a un
gran compa, Sergio (jsack!). Con Fernando, Jacobo y otros mercenarios redescubri los
deportes minoritarios y con el resto de precarios, Willy, Ratl, Rubén, Javi, Africa, Jose,
Tomas, Ana... comparti congresos varios, riesgos legendarios, y estupendas noches larios.

Agradecer también a mi prima Marfa, por la experiencia compartida, a Edu, amigo
de y para toda la vida, a Manu y Laura (;para cuando otra partida?), a Pablo, Pedro
y toda la gente curtida, en la casa mas divertida. A Ba, por la locura divina de tanta
ida y venida. A la memoria de Hortensia y mis abuelos (mi pequena herida).

A Eva, Oscar, Alex-san, Esti, JP, jtodo el clan!, son muchos afios compartiendo plan
y aguantando a este rufidn. Espero que sigamos en conexion y que, vea o no Japon, trae
ese ron siga siendo la cancion.

A Javi, Euke, Pablo... mi gente del “Ruiz“, anios ha compartiendo parque y tapiz,
ahora més de cécteles y perdiz, pero no cambia ni un matiz, a vuestro lado siempre
feliz. Por supuesto que en breve un bis y gracias porque nunca huis, de la lucha contra
un dia gris.

No puedo no hacer mencién, a la gente del Unién, unidos por un balén, hoy ya,
herman@s de corazén: Aunque sedis un montén cada uno, en mi opinién, merece minimo
una cancién. Un grupo de amigos de sélidos cimientos, de sinceridad sin miramientos,
con los que he vivido grandisimos momentos y que segtin varios cuentos engloba méximo

a unos 300.

Por dltimo y con gana, agradecer el carino y apoyo constante de mi hermana, papa y
mama, que sin afdn de fama, consiguen que no me falte calma, y vaya tranquilo a la
cama. Porque sé que ante cualquier drama, sea cual sea la llama, que suceda en el

manana, solo tendria que hacer reclama.

Gracias.



Contents

Contents

List of Figures

List of Tables

1 Introduction

1.1
1.2
1.3
1.4

Motivation . . . . . . . ...
Theoretical Issues . . . . . . . . . . . . ... ... ...,
Approach . . . . . ...

OVerview . . . . . . o

I Theoretical Framework

2 Method: Self-Consistent Hydrodynamical Simulations

2.1
2.2

2.3
24

2.5

Introduction . . . . . . .. ... .. oL
Description of the Method . . . . . . ... ... .....
2.2.1 Algorithms . . .. ... ... ... ........
2.2.2  Initial Conditions . . . . . . ... ... ... ...
2.2.3 Additional Physics . . . . . ... ... ... ...
State of the Art . . . . . . .. ...
The Deva Code . . . . . .. .. ... ... ... .....
2.4.1 Gravity and Gas Dynamics . . . ... ... ...
2.4.2 Additional Physics . . . . .. ... ... ... ..

Summary . ...

3 Formation and Evolution of Elliptical Galaxies

3.1
3.2

Introduction . . . . . . .. ..o
Elliptical Galaxies . . . . ... ... ... ... .....
3.2.1 Structure and Kinematical Profiles . . . . . . ..

3.2.2 Parameter Correlations: The Fundamental Plane

ix

Ot i W =

12
14
15
16
18
18
19
21



ii

Table of Contents

3.2.3 Observational Problems, Theoretical Improvements . . . . . . . . 36

3.3 Monolithic Collapse vs Hierarchical Merging . . . . . . . ... ... ... 39
3.3.1 Different Observational Constraints . . . . . . .. ... ... .. 40

3.4 Summary ... .l 43

II Simulations and Tools 45
4 Analysis of the Simulations 47
4.1 Introduction . . . . . . . . . . ... 47
4.2  Simulations runs under study . . . . . ... ..o oo oL 47
4.3 Galaxy-like objects in the simulations . . . . ... ... ... .. .... 54
4.4 Building Elliptical-Like-Objects (ELO) Samples . . . . . .. .. ... .. 60
4.4.1 The halo and stellar scales of an ELO . . . .. ... .. ..... 65

4.5 Calculating global properties . . . . . . .. .. ... 0. 70
4.5.1 The halo scale properties . . . . . ... .. ... ... ..., 70

4.5.2 The stellar scale properties . . . . . . . ... ... ... ... .. 73

4.5.3 The observational stellar scale properties . . . .. ... ... .. 74

4.6 SUMMATY . . . . . o e e e e e e e e 78
IIT Results 83
5 Ellipticals at z = 0: Profiles 85
5.1 Introduction . . . . . . . . .. L 85
5.2 Structure Profiles . . . . . . . ... o 85
5.2.1 Three Dimensional Structure for Gas Particles . . .. ... ... 86

5.2.2 Stellar and Gaseous Particle Orbits . . . . . . . .. .. ... ... 87

5.2.3 Dark Matter Profiles . . . . . . . ... ... ... ... ... . 88

5.2.4 Baryonic Three-Dimensional Mass Density Profiles . . . . . . .. 92

5.2.5 Total Three-Dimensional Mass Density Profiles . . . . . . . . .. 99

5.2.6  Projected Stellar Mass Density Profiles . . . ... ... ... .. 101

5.3 Kinematic Profiles . . . . .. .. .. . o 102
5.3.1 Three-Dimensional Velocity Distributions . . . . . ... .. ... 102

5.3.2  Stellar LOS Velocity and Velocity Dispersion Profiles. . . . . . . 105

5.4 Conclusions . . . . . . . . . .. 110

6 Ellipticals at z = 0: Fundamental Parameters 113
6.1 Introduction . . . . . . . . . . . ... 113
6.2 Fundamental Parameters: The Fundamental Plane . . . . . . . ... .. 114

6.2.1 Fundamental Parameters: Halo Scale . . . . . . . . .. ... ... 114



Table of Contents iii

6.2.2 Fundamental Parameters: Baryonic Object Scale . . . . . . . .. 116
6.2.3 Fundamental Parameters: Projected Baryonic Object Scale . . . 121
6.2.4 The Origin of the Tilt of the Fundamental Plane . . . . . . . .. 128
6.2.5 The Scatter of the Fundamental Plane . . . . . . ... ... ... 132
6.3 The Photometric Plane . . . .. .. .. .. ... ... ... .. ..., 135
6.3.1 The Hyperplanein4D . . . . .. ... ... ... .. ....... 136
6.4 Stellar Population Properties . . . . . ... .. ... ... .. ...... 139
6.5 Robustness of Results and Beyond: Test Samples . . . . . .. ... ... 141
6.5.1 Changes in the Cosmological Model . . . . ... ... ... ... 141
6.5.2 Possible Resolution Effects . . . . ... ... ... ... ..... 145
6.5.3 Box Size Effects . . . .. ... o oo 148
6.6 Discussion and Conclusions . . . . . . . ... ... ... ... 157
6.6.1 Main Results . . . . . . . . ... ... ... 157
6.6.2 Summary . . . .. ... 161
7 Ellipticals at z = 0: The Rotation versus Shape Relation 163
7.1 Introduction . . . . . . . . . . . . . 163
7.2 The Shape of ELOs . . . . . . . . . .. ... .. .. .. .. .. ... .. 164
7.3 The Rotation of ELOs . . . . . . . . ... ... ... ... ... .. 168
7.4 Rotation vs. Shape: 3D and 2D Results . . . . ... ... ... ..... 170
7.5 Consistency Checks . . . . . . . . . ... o 174
7.6 Conclusions . . . . . . . . . . . e 175
8 Evolution of Ellipticals since z<1.5 177
8.1 Introduction. . . . . . . . . . . . . .. 177
8.2 The Fundamental Plane . . . . . .. .. .. ... ... ... ... .. 178
8.3 The Photometric Plane Evolution . . . . . . . ... ... ... ... ... 185
8.4 Other Structural and Kinematical Parameters . . . . . ... .. ... .. 189
8.5 The Rotation versus Shape Diagram . . . . ... ... ... ... .... 191
8.5.1 Shape and Kinematics of Elliptical Galaxies: Evolution Due to
Merging at z<1.5 . . . . . . . ... Lo 191
8.6 Conclusions . . . . . . . . . . . . e 202
9 Galaxy Formation and Evolution from DEVA simulations 205
9.1 Introduction. . . . . . . . . . . . . .. e 205
9.2 Insights into ELO Assembly . . . . . . ... ... ... ... ... ... 206
9.2.1 The Two Phase Scenario . . . . . . . .. . ... ... ...... 208
9.3 Accreting and Expelling Gasin ELOs . . .. ... ... ... ...... 215
9.3.1 Hot Gasin ELOS . . ... ... ... ... ... ... .. .... 215

9.3.2 Baryon Fraction . . ... ... ... ... . L. 215



iv

9.3.3 When and Where is the Hot Gas Heated?

9.4 Conclusions . . . . . . . ..

IV  Conclusions and Outlook

10 Conclusions and Outlook

10.1 Summary and Conclusions . . . . . . . ... ... ...
10.2 Discussion . . . . . . . ...
10.3 Outlook . . . . . . . . . . ... ...

V  Appendix

Introduccion

A.1 Motivacién y objetivos . . . . . . .. .. ... ... ..
A2 Aspectos tedricos . . . . ...
A3 Método . .. .. ... ..
A4 Estructuradelatesis. . . .. ... ... ... .....

B Conclusiones y trabajo futuro

B.1 Conclusiones . . . . . . . . ...
B.2 Discusion . . . . . ...
B.3 Trabajo Futuro . . . . .. ... ... ... .......

C The Standard Cosmological Model

C.1 Imtroduction. . ... .. ... ... ... ... .....
C.2 The Hot Big Bang Model . . . .. ... ... .....

C.3 The Expansion of the Universe: The Hubble Law

C.4 Nucleosynthesis . . . . . . .. ... ... ... .....
C.5 Existence of a Cosmic Microwave Background . . . . .
C.6 Formation of Large Scale Structure . . . . . . . .. ..

C.7 Conclusions . . . . . . . . . . . e

D Data Tables

E Published Articles

Bibliography

Table of Contents

225

227

.......... 227
.......... 231
.......... 233

235

237

.......... 237
.......... 239
.......... 240
.......... 241

243

.......... 243
.......... 247
.......... 249

363



List of Figures

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10

5.1
5.2

5.3
5.4
5.5
5.6

5.7

5.8

5.9

5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18

View of a cosmological box simulationat z=0 . . .. .. .. ... ...
Group finding algorithms tests: mass function . . . . . . . . . ... ...
Group finding algorithm tests: direct mass comparison . . . . . . . . ..
Comparing group finding algorithms: mass function resolution issues . .
Morphologies in Deva: Elliptical-like Object . . . . . . . ... ... ...
Morphologies in Deva: Disk-like Object . . . . .. .. ... .. ... ..
Morphologies in Deva: Irregular Object . . . . . . .. .. ... .. ...
Dark matter mass profiles for ELOs . . . ... ... .. ... ......
Stellar mass profiles for ELOs . . . . . . .. ... ... ... .......

Slit position to compute stellar kinematics . . . . . . . . ... ... ...

3D gas and dark matter densities for an ELO . . . . . ... ... .. ..
Cosine of position and velocity, and angular momentum, of constituent
particlesof an ELO . . . . . . .. ...
Fits for dark matter density profiles . . . . . . ... .. ... ... ...
The distribution of the x? for the DM fits . . . . . . ... ... .....
Inner slopes for the DM halos . . . . . . ... ... ... ... ......
The p_2 parameter versus the r_y scale obtained from fits to the Einasto
model . . ...
3D stellar mass density profiles . . . . . . .. ... oL
Fits for 3D stellar mass density profiles . . . . . . ... ... ... ...
x? statistics for the 3D stellar mass density profiles . . . . . . ... ...
The stellar-to-dark mass density profiles . . . . . .. ... ... ... ..
The fraction of dark-to-total mass profiles . . . . . . ... ... ... ..
Parameters that define the dark-to-total mass distribution . . . . . . . .
Baryon fraction profiles . . . . . . . ... ... . L
3D hot gas mass profiles . . . . . . . ... Lo
Total mass density profiles . . . . . . . . . ... ... .. ... ... ...
Slopes for the total mass density profiles . . . . . . . .. ... ... ...
Fits for projected stellar mass density profiles . . . . . . ... ... ...

The circular velocities profiles . . . . . . . ... ... .. oL



vi

List of Figures

5.19 The osp(r) profiles . . . . . . . . . ... 104
5.20 The o$ar(r)/oSak(r) ratio profiles . . . . . .. ... ... ... ..., 105
5.21 Reproducing observational line-of sight profiles . . . . . ... ... ... 106
5.22 LOS velocity dispersion velocity profiles . . . . . .. .. ... ... ... 108
5.23 The average LOS velocity dispersion profiles normalized at thf)‘g 109
5.24 The crot Tatios . . . . . . L 109
6.1 Fundamental parameters at the haloscale . . . . ... ... ... .... 115
6.2 Masses of stars and cold baryons inside the virial radii . . . . . . .. .. 116
6.3 The Origin of The Fundamental Plane: ¢f ratio . . . . . . ... ... .. 117
6.4 3D stellar masses and half-mass radii versus virial mass . . . .. .. .. 118
6.5 The Mvir/Mﬁgar ratios . . . . .. e 119
6.6 The MP/M ratios . . . .. ..o 120
6.7 The Intrinsic Dynamical Plane . . . . ... ... .. ... .. ...... 121
6.8 The Observed Fundamental Plane: kappa space . . . . . . ... .. ... 125
6.9 The Dynamical Plane: R$Hr, M@ and Ufgsro space . ... ... .. 126
6.10 L.o.s. velocity dispersion versus virial mass . . . .. ... ... ... .. 127
6.11 The Origin of The Fundamental Plane: ¢q ratio . . . . ... ... ... 130
6.12 The Origin of The Fundamental Plane: ¢, ratio . . . ... ... .. .. 130
6.13 The Origin of The Fundamental Plane: ¢,q ratio . . . . ... ... ... 131
6.14 The Origin of The Fundamental Plane: cype ratio . . . . . ... ... .. 132
6.15 Observed relations with Sérsic shape parametern . . . . . . . . . .. .. 136
6.16 The Structural Photometric Planeat z=0 . .. ... ... ... .. .. 137
6.17 Stellar age population properties at z =0 . . . . .. .. ... ... ... 140
6.18 Robustness of results: Cosmology test I . . . . . ... ... ... .... 142
6.19 Robustness of results: Cosmology test IT . . . . . . ... ... ... ... 143
6.20 Robustness of results: Cosmology test III . . . . ... ... ... .... 144
6.21 Robustness of results: Resolution test I . . . . . ... ... ... .... 145
6.22 Robustness of results: Resolution test IT . . . . . . .. ... .. .. ... 146
6.23 Robustness of results: Resolution test IIT . . . . . . .. ... ... ... 147
6.24 Robustness of results: Box side test I. EF1 . . . . . .. ... ... ... 148
6.25 Robustness of results: Box side test IT . . . . . . .. .. ... ... ... 149
6.26 Robustness of results: Box side test III. EF1 . . . .. ... ... .... 150
6.27 Robustness of results: Box side test I. EF3 . . . . .. ... ... .... 152
6.28 The Dynamical Plane: R$Hr, My and Ulsggro space. EF3. ... ... .. 153
6.29 Robustness of results: Box side test III. FF3 . . . .. ... ... .... 154
71 3Daxisratiosat z=0 ... . . . . .. . ... ... 165
7.2 3D Shape histogram at z=0 . . .. .. ... ... ... ... .. ..., 166
7.3 Measuring shape parameters: 3D versus 2D . . . . . ... ... ... .. 167



List of Figures vii

7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10
9.11
9.12
9.13
9.14

C.1
C.2
C.3
C4
C.5
C.6

3D Shape of z = 0 ELOs versus stellar mass . . . . . . ... ... .... 167
Measuring rotation parameters: 3D versus 2D . . . . . .. ... oL 169
3D Rotation of z = 0 ELOs versus stellar mass . . . . ... ... .... 170
Rotation versus shape at z=0: 2D. . . ... ... ... ... .. .... 171
Rotation versus Shapeat z=0: 3D . ... ... ... ... ....... 172
Guessing the 3D shape from the Rotation-Shape diagram . . . . . . .. 173
Shape and Rotation of Es. Resolution tests. . . . . . .. ... ... ... 174
Guessing the 3D shape from the Rotation-Shape diagram. Box size and

SF test samples. . . . . . . . L 175
Evolution of 3D Fundamental Parameters: (E,r,v) space . . . ... .. 179
The Evolution of the Fundamental Plane: kappa space . . . . . . .. .. 181
The Evolution of the Fundamental Plane: kappa space EB and FF3 . . 182
Shape parameter, n, vs Fundamental parameters since z < 1.5. . . . . . 186
The Evolution of the Photometric Plane . . . . . . . ... ... ... .. 187
Structural and kinematical parameters evolution since z < 1.5 . . . . . . 190
Evolution of the 3D Shape histogram. Test Samples . . . . . .. .. .. 200
Evolution of the V,,/o§™" histogram. Test Samples . . . . .. ... ... 201
Parameter evolution for an ELO . . . . . ... ... .. ... .. .... 203
Mass aggregation tracks for ELOs . . . .. .. ... ... ... ... .. 206
Star formation rate histories for ELOs . . . . . . ... ... ... .... 207
ELO formation: Flow convergence of baryonic particles . . . . . .. .. 209
ELO formation: cell structure . . . . . . .. ... ... .. oL 210
Dissipation and star formation rate . . . . . . . .. ... ... ... ... 211
High redshift proto-ELO . . . . . . .. . ... .. . . 212
Slow phase: dry merger . . . . . . . . . ... 214
Slices showing gas temperature up to 4 X ryir « « « « « o .o 216
Baryon fraction for the EFA samples at different redshifts . . . . . . . .. 217
Density-temperature path for different particles along z . . . . . . . .. 220
Maximum temperature histogram . . . . . . .. .. ... ... 221
Cooling time for the hot mode . . . . . . ... ... ... ... ..... 221
Star formation rate and the hot mode . . . . . . . ... ... ... ... 222
Gas accreted in cold mode over total . . . . . . . ... ... ... .. 222
Hubble law for SNe Ia . . . . .. .. .. ... . L 258
Nucleosynthesis abundance predictions. . . . . . .. ... ... ... .. 260
CMB: Black Body radiation. . . .. ... ... ... ... .. .. ..., 261
Power Spectrum measurements. . . . . . .. ..o 265
Rotation curve: Dark matter. . . . . . . . .. ... ... L L. 267
Cold Dark Matter vs Hot Dark Matter . . . . . . ... ... ... .... 268



viii List of Figures



List of Tables

4.1
4.2
4.3
4.4
4.5

6.1
6.2
6.3
6.4

6.5
6.6
6.7
6.8

6.9
6.10
6.11

8.1
8.2
8.3
8.4
8.5

8.6

C.1
C.2
C.3

Parameters of the simulations . . . . . .. ... ... ... ........ 53
Group identification runs . . . . . .. ... 55
The ELO samples . . . . . . . . . . . e 67
Parameter names and symbols . . . .. ... 80
Profile and ratio names and symbols . . . . ... ... 81
The Intrinsic Dynamical Plane: PCA results . . . . ... ... ... .. 120
Maximum likelihood estimates for SDSS early-type sample. . . . . . .. 124
The Tilt of the FP: Slopes for Linear Fits FA-Z0 and EB-Z0 . . . . .. 133
The Tilt of the FP: Slopes for linear fits of FA-Z0 and EB-Z0 Projection

effects. . . . . . L 133
Scatter of the Fundamental Plane. . . . . . . .. .. ... ... ..... 134
PhoP principal component analysis for ELO samples at z =0 . . . . . . 138
r.m.s. orthogonal comparison: An Hyperplane in 4D? . . . . ... ... 138
The Tilt of the FP: Slopes for linear fits of EC-Z0, ED-Z0 and EF-Z70

test Samples . . . . ... 155
Scatter of the Fundamental Plane: Test samples. . . . . . .. ... ... 155
The Intrinsic Dynamical Plane: PCA results. Test Samples . . . . . .. 155
PhoP principal component analysis for ELO samples at z =0 . . . . . . 156

FP principal component analysis at different redshifts for FA samples . 180

Slopes for linear fits at different redshifts for EA samples. . . . . . . .. 183
Slopes for linear fits at different redshifts for FA samples. . . . . . . .. 184
Slopes for linear fits at different redshifts for FF3 samples . . . . . . . . 184

Shape parameter n vs Fundamental parameters since z < 1.5: Slopes
from fits . . . . . . L 186
PhoP principal component analysis at different redshifts for ELO samples 188

Energy density evolution for different contents of the Universe . . . . . . 256
Cosmology from CMB anisotropies: WMAP . . . . ... ... ... ... 263
Concordance Model: Parameters-Fit . . . ... ... ... ... ..... 269



D.1
D.2
D.3
D.4
D.5
D.6
D.7
D.8

Fundamental parameters of ELOsat z=0. . . . ... .. ... ..... 272

Rotation and Shape parameters for ELOsat z=0 . .. ... ...... 278
Fundamental parameters of ELOsat z=05. . .. ... .. .. ..... 286
Rotation and Shape parameters for ELOsat z=05 ... ... ... .. 290
Fundamental parameters of ELOsat z=1. .. ... ... ... .. ... 296
Rotation and Shape parameters for ELOsat z=1 . ... ... ... .. 300
Fundamental parameters of ELOsat z=15. ... .. ... .. ..... 305

Rotation and Shape parameters for ELOsat z=15 ... ... ... .. 308



Chapter 1

Introduction

This work presents an original approach to the study of the formation and evolution of
elliptical galaxies in a cosmological context.

The first section of this introduction is concerned with the motivation for the present
work. The second section lists the theoretical issues that are encountered when analyzing
the problem. A short description of the chosen approach is then presented. Finally, the
overview section provides the reader with a bird’s view of the organization and contents
of the work itself.

1.1 Motivation

Ever since the 1930s when galaxies were confirmed as the fundamental building blocks
of the universe, their origin and evolution have remained as one of the most important
challenges at the interface between Astronomy and Cosmology. It also turned out that
they were some of the most difficult to discern mainly because of two reasons: First,
galaxies take very long to evolve, so it is impossible to study one galaxy from birth
to death. Therefore astronomers have been faced with the task of studying galaxies
by looking at snapshots. It has now turned possible for astronomers to collect a huge
number of these snapshots and maybe even more important, to see distant galaxies,
thanks to the new generation of telescopes and spectrographs.

The second reason was that, as in any physical problem, the study of galaxy forma-
tion needed some solid initial conditions in the frame of current theories. Cosmology has
dealt with this issue during the ultimate seven decades. However, the last few years have
seen the emergence of an observationally consistent cosmological model based on firm
physical ideas. The hot big bang model of the expanding universe, whose structure and
dynamics can be described by general relativity, has a number of cosmological param-
eters that are now well constrained by numerous observations: WMAP measurements
of the cosmic microwave background radiation (CMB Dunkley et al., 2009), supernova

data (Riess et al., 2007), measurements of large scale structure (Massey et al., 2007;



2 Chapter 1. Introduction

Percival et al., 2007), among others have settled on a concordance model of a spatially

flat universe with matter density about 30% of critical.

This model predicts that the large scale structure galaxy distribution that we ob-
serve in galaxy surveys must have formed through gravitational collapse of the small
fluctuations left over from that earlier time. The properties of these large-scale mass
densities can be predicted from the initial conditions as observed in the CMB combined
with our understanding of gravity as described by General Relativity. Large scale stud-
ies of comprehensive surveys as SDSS (York et al., 2000) or 2dF (Folkes et al., 1999)
confirm this idea. While the theory of origin of structure at large scale is more than
promising, there are still some open questions at lower levels that the standard model
has to answer. One of them is galaxy formation where the model has to address for a

huge set of observational data available.

Actually, the amount of observational data nowadays is indeed so huge that studying
the origin and evolution of galaxies in detail encourages to focus on some particular
cases. As the term galaxy comprises a wide variety of types of galaxies with different
properties, one way to deepen into this topic during the last decades has been to try
to know how each of these different types of galaxies were formed, because sharing
the same physical properties, their formation process should experience some common

features.

From all the population of galaxy classes, elliptical galaxies are the easiest to study
and are those that show the most precise empirical regularities, some times in the form of
very tight correlations among their observable parameters (Djorgovski & Davis, 1987;
Faber et al., 1987; Caon et al., 1993; Bernardi et al., 2003a). The interest of these
regularities lies in that they may encode a lot of relevant information on the physical
processes underlying elliptical formation and evolution. All the new advances make
it possible for the first time to address meaningfully key questions about the way in
which elliptical galaxies were formed and evolved over 10 billion years of cosmic history.
When did they appear? What triggered the process of their formation? Do all form at a
single, well defined epoch or is their formation spread out in time? Were the early proto-
ellipticals similar to present-day Es? What is the connection between this population
and the physics of the early universe? And perhaps, most interestingly of all, what are
the processes that establish the observed relations between the various structural and

kinematical properties?

Self-consistent hydrodynamical simulations constitute a powerful tool to work out
these questions, since they make possible to accurately follow the evolution of the dy-
namical and thermodynamical properties of matter in the Universe. The general idea
is to solve simultaneously the gravitational and hydrodynamical evolution equations.
Therefore, they are a key tool in connecting the initial conditions offered by cosmology

and all the available data from observations. So, in some sense, they play the role of
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the laboratory experiments of astrophysics.

The main advantage of this kind of simulations is that physics is introduced at the
most general level, and the dynamical processes relevant to galaxy assembly, such as
collapse, gas infall, interactions, mergers, etc, emerge naturally, rather than by assump-
tion, and can be followed in detail. Only the subscale physics needs to be modeled.
These considerations emphasize the interest in hydrodynamical simulations as a very
convenient tool in order to understand the formation and evolution of galaxies from the
field of primordial fluctuations.

Therefore, this was the motivation for the present work: using self-consistent hy-
drodynamical simulations to build a consistent theoretical framework to interpret and

study the different observations of elliptical galaxies.

1.2 Theoretical Issues

The approach that has been outlined in the motivation section involves several fields
of knowledge. Part I of this thesis, Theoretical Framework provides an introduction
to each of these fields. This section provides an overview of the contents of Part I,
presenting short descriptions of each field and the reasons to include them.

From the moment that theoretical models gave some initial conditions it was a matter
of time that scientists started to study their evolution and compare it with observations.
The complex evolution of the primordial inhomogeneities made cosmological pure N-
Body simulations, which computed only gravitational force, a powerful tool to study
them in the non-linear regime. First attempts to use this technique in the study of the
formation of large structure started during the 70’s (Peebles, 1974; Press & Schechter,
1974; Miyoshi & Kihara, 1975; Aarseth et al., 1979), obtaining a great success and
motivating several cosmological N-body simulations all over the world.

From these first approaches up to nowadays, all the different algorithms and ideas
that this technique englobes have been continuously refined. In this sense, and first of
all, it is worth to say that simulators are in deep debt with all the incredible advances
in computer technology developed during the last decades.

Incorporation of hydrodynamics in cosmological simulations has made it possible to
study not only the gravitational formation of dark matter halos, but also the properties
of baryonic matter, and thus the formation of galaxies associated with those halos.
First self-consistent hydrodynamical simulations were done in the late 80s (Evrard,
1988; Hernquist & Katz, 1989; Navarro & White, 1994).

To date, no code has sufficient dynamic range to compute both the large scale
cosmological evolution on scales of many hundreds of megaparsecs and the formation
of stars from baryons, but physical heuristics have been successfully incorporated into

some codes to model the conversion of baryons into stars (Cen, 1992; Tissera et al.,
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1997; Thacker & Couchman, 2000). Since the beginning of this new millennium several
groups have obtained great success in modeling the formation of galaxies using self-
consistent simulations which take into account the dynamics of DM and gas, radiative
cooling, star formation and some other sub-resolution physic (Sommer-Larsen et al.,
2002; Murali et al., 2002; Meza et al., 2003; Sdiz et al., 2003; Kawata & Gibson, 2003;
Séiz et al., 2004).

Anyway, to do a proper analysis we have not only to understand the way these
simulations technique works, its limits and advantages, but also we need to know how
to compare correctly their results with theory and observations. To this end, we need
to deepen into the available data of real elliptical galaxies to discover what it is really
known about them. Maybe even more important is how all this information was obtained
in order to be able to mimic as far as possible the same methods, facilitating the
comparison.

Furthermore, we also have to study the different models that have been proposed for
the formation and evolution of elliptical galaxies. A set of observations suggested that
ellipticals formed at higher redshift and on short timescales, in what has been called the
monolithic collapse scenario (Eggen et al., 1962; Larson, 1974; Matteucci, 2003). On
the other hand, another set of observations suggests that mergers at intermediate and
low redshift could have played an important role in the assembly of this type of galaxies
pointing to, what is called, the hierarchical scenario (White & Rees, 1978; Cole et al.,
1994; Bundy et al., 2005). These observational results are paradoxical and challenging,
making the study of the problem in connection with the global cosmological model a

clear must do and a very promising method.

1.3 Approach

Inspired by all the prior art on self-consistent hydrodynamical simulations mentioned
above, and specially by the work of Sdiz et al. (2004), we have tried to go one step further
in the study of elliptical galaxies using this method. To this end, we have worked on
obtaining both, a large sample of systems from simulations to study, to have significant
statistics, and also that the resolution of these systems would be high enough to do a
proper structural and kinematical analysis.

A critical issue regarding the code used to perform the simulations is that conser-
vation laws are accurately verified. Particularly, an appropriate numerical code must
satisfy all the conservation laws for physical quantities such as momentum, energy, or
entropy. In this thesis we have used the DEVA code (Serna et al., 2003) and its parallel
version P-DEVA which fulfills all these requirements.

As we intend to use these simulations as tools to better understand the real Universe,

it is essential to have a more or less direct way to compare between simulation outputs
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and observations. To carry out the comparison we must rely on galaxy properties which
are measurable both on the simulations outputs and in observations.

In this work, we have studied the strong correlation observed between different
structural and dynamical parameters of ellipticals. Using hydrodynamical simulations
we have arranged, in addition to the equivalent observable measurements, the 3-D stel-
lar object parameters and halo scale parameters for our elliptical-like objects. With
the information obtained from this study, we want to deepen into the origin of these
correlations, address their evolution with redshift and its implications in the formation
of elliptical galaxies.

To this end, we have first dealt with the design of all the different characteristics of
the simulations that we needed to achieve our goal of statistics and resolution. We had
to take into account that there are finite resources available, in the sense not only of
computer power but also in real time.

Once we had all the details about the simulations configured, we have built a set
of analysis tools aimed at a proper comparison with both, observational data and the-
oretical (analytical and simulations) results. As it can be seen along this work, there
are a lot of different parameters and properties of our simulated ellipticals in which we
are interested so, we needed to develop a significant amount of computer programs and
algorithms. However, the general idea behind our implementation has been to create
a solid pipeline of analysis which can be useful not only to analyze these simulations
but also the future ones. We have made its architecture highly modular, to facilitate
the inclusion of more functions and/or the improvement of older ones. To improve the
usability for beginner users, different global parameters which can be tuned readily have
been defined.

1.4 Overview

This work is organized as follows:

Part I — Theoretical Framework: Provides the groundwork for the results pre-
sented in Part III, with an introduction to each of the fields of knowledge touched
by the present work. Terms and concepts used in the results are introduced and
described. Chapter 2 gives introduction to self-consistent hydrodynamical simu-
lations. In particular we present the code we have used to run our simulations,
DEVA. Chapter 3 gives a short overview of present galaxy formation theory, models

and observational constrains.

Part IT — Simulations and Tools: Includes Chapter 4 in which we present a detailed
description of the different simulations under study, how they have been analyzed
and the different technical issues concerning the study of elliptical-like object

properties.
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Part IIT — Results: We present the results of our study of galaxy formation using
hydrodynamical simulations divided in two separate blocks. The first one includes
Chapters 5, 6 and 7, and deeps into several kinematical and structural properties
of nearby ellipticals. The second block is concerned about the characteristics of
elliptical galaxies at younger epochs. In particular, Chapter 8 presents a study
of the evolution of the different fundamental relations of these type of galaxies
at redshift below 1.5. Finally, Chapter 9, provides some insights into elliptical

galaxies formation and evolution scenarios.

Part IV — Conclusions and Outlook: Contains the conclusions, a brief discussion

of important aspects and outlines future work.

Additionally, Appendix A contains a translation of this first chapter into Spanish.
Appendix B contains a translation into Spanish of the conclusions part. As a general
frame for this work, Appendix C summarizes the Standard Cosmological Model intro-
ducing several concepts that are used throughout this thesis. For the sake of clarity
and ease for the reader, Appendix D includes several long data tables that would be
referenced along this thesis.

Finally, some of the work that is presented in this manuscript has appeared on a set
of refereed journals (Onorbe et al., 2005; Dominguez-Tenreiro et al., 2006; Onorbe et al.,
2006; Ofiorbe et al., 2007; Gonzalez-Garcia et al., 2009)! and conference proceedings
(Omnorbe et al., 2006; Onorbe et al., 2006, 2007; Dominguez-Tenreiro et al., 2008; Onorbe
et al., 2008) in which I have participated during the development of this thesis as would

be indicated on each chapter when appropriate.

'First four articles can be found in Appendix E. Last article has been included in Section 8.5
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Theoretical Framework






Chapter 2

Method: Self-Consistent

Hydrodynamical Simulations

2.1 Introduction

Structures like galaxies and clusters of galaxies are believed to have formed by am-
plification of small perturbations (Peebles, 1980; Peacock, 1999; Liddle & Lyth, 2000;
Bernardeau et al., 2002). Galaxies are highly over-dense systems. Matter density, p,
in galaxies is thousands of times larger than the average density, p, in the universe.
Thus in this scenario the problem of galaxy formation and the large scale distribution
of galaxies is essentially one of evolving density perturbations from small initial values
to the large values we encounter today. In this sense, advances in computer science
have brought us the possibility of making these extremely complex calculations in a
reasonable time.

The present chapter is devoted to give a general picture of the main tool used in this
thesis, the self-consistent hydrodynamical simulations. First, Section 2.2, introduces
the theoretical issues of this method and the main problems that it has to face. There-
after, in Section 2.3, we briefly examine the last advances in this topic during the past
years. In Section 2.4 a detailed description of DEVA, the code used in all our numerical

experiments, is given. Section 2.5 is the summary.

2.2 Description of the Method

Equations that describe the evolution of density perturbations in non-relativistic matter
due to gravitational interaction in an expanding Universe have been known for a long
time (Peebles, 1980). The fundamental idea is that due to the Birkhoff theorem, as long
asin aregion v/c < 1 and r < horizon, Newtonian approximation continues to be a valid
framework (see Peacock, 1999, for a more detailed explanation). Then, the dynamical

equations that described the evolution of these inhomogeneities in a pressure-less and
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self-gravitating Newtonian fluid are: the equation of continuity for mass conservation
(Eq. 2.1), Euler’s equation for momentum conservation (Eq. 2.2) and Poisson’s equation
that accounts for the Newtonian gravity (Eq. 2.3). Considering that the phase-space
distribution function of the fluid is given by f(r,p,t), where r is the position and p the
momentum (p = mwv), p is the proper mass density, p(r,t) = [ f(r,p,t)d>p, ® is the
gravitational potential and d/dt = 9/t + v -V, is the usual convective derivative, then

these equations can be written as:

d

£ ==V, (pv) (Equation of continuity) (2.1)

dv , )

i —V,® (Euler's equation presureless) (2.2)
V2® = 47Gp (Poisson’s equation) (2.3)

Here, we have written the three last equations in Eulerian coordinates, this is, they
are fixed in an inertial reference frame. The alternative approach to fluid dynamics is
to use Lagrangian coordinates, which are fixed to a given parcel of fluid but move in
space. They have the property that the Lagrangian position of a fluid element does not
change with time. In cosmology, a type of Lagrangian coordinates is used by the name
of comoving coordinates. These label observers who follow the Hubble expansion in
an unperturbed universe. In this case, comoving coordinates and physical coordinates
are related by the scale factor a(t). For a more detailed description of the underlying
cosmology and related issues as the scale factor, see Appendix C. The comoving position
Z and the physical position 7 are related by 7(¢) = a(t)Z. The comoving time coordinate
is the elapsed time since the Big Bang according to a clock of a comoving observer and

is a measure of cosmological time. Physical velocity, ¢ = dr’/dt, and comoving velocity,

i = d¥/dt, coordinates are linked by the following expression ¢ = d?i(tt)i" +a(t)u. V, is
the comoving gradient, which is related with the physical gradient as V, = V, /a(t).

It is useful to rewrite equations (2.1), (2.2) and (2.3) in comoving coordinates when
working in an expanding universe framework because it allows us to focus on perturba-
tions in density and velocity. For this purpose it is also helpful to express the density
as a first order perturbation magnitude!, p(r,t) = po(t) + dp(r,t), because po(t) be-
haves like po(t) oc a(t)~2 in comoving coordinates. If we also define the density contrast

d, = 6p/po we get the following relation:

pla,t) = po(1+5)) (2.4)

!Nonetheless it is important to remark that once we consider a perturbed universe, the comoving
coordinates formed by dividing the eulerian coordinates by the scale factor a(t) are no longer pure
Lagrangian because gravity will cause a non-uniform distribution of the fluid to grow increasingly
irregular. In other words, when dp # 0 then x — z(t).
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as the expression for density in comoving coordinates. From this definition and using
Eq. (2.3), the gravitational potential can be expressed as ®(x,t) = ®o(t) + 6P (x, 1),
where §® is called the peculiar gravitational potential. Therefore, equations (2.1), (2.2)

and (2.3) in comoving coordinates to first order in the perturbations (linear regime) are

written as:
6, = —Va[(1+dp)u] (Equation of continuity) (2.5)
N 1 / :
i+2-3=—-—-5V,60 (Euler's equation presureless) (2.6)
a a
V25® = 4nGa’pyd, (Poisson's equation) (2.7)

where dot stands for d/dt and two dots for d?/dt? and we have used the unperturbed so-
lution for Euler equation (2.6), this is, if §, — 0 = (d/a)x = —a2V P (see Peacock,
1999, for a full demonstration). These equations can be solved analytically for a small
density contrast, and for highly symmetric situations. There are many approximate
solutions in the quasi-linear regime that are useful for understanding the evolution of
perturbations in this regime (Zel’Dovich, 1970; Gurbatov et al., 1989; Bernardeau et al.,
2002) but fail when density contrast become large (§, > 1).

Taking into account that clusters have typical overdensities of ~ 10% and galaxies
around ~ 10% (Ettori et al., 2002), it seems that the use of numerical methods to
study how galaxies are assembled within a cosmological scenario from field of primordial
fluctuations is a convenient approach. The exact solution of the density field can be
performed by means of a numerical simulation, in which the density field is represented
by the sum of a set of fictious discrete points. The basic steps in this type of simulations

can be summarized as follows:

(i) implementation of initial conditions. See below for a brief discussion on initial

conditions.
(ii) Calculation of the force by solving the Poisson equation.
(iii) Update of positions and velocities of particles.
(iv) Diagnostics, e.g. tests of energy conservation.
(v) Go back to (ii) until simulation is completed.

So, numerical simulations are basically a Monte-Carlo method of solving these equations,
with the number of bodies per volume governing the accuracy of the method.

We have shown the equations that govern the motion of a pressure-less fluid. This is
valid for dark matter only simulations (often called N-Body simulations) which are very

useful to understand the large scale structure formation. However, at galactic scales,
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gas dynamic plays an important role and it needs to be taken into account for a proper
solution of the problem. In this case we have to extend the Euler equation for motion
(Eq. 2.2) to the baryons, adding a pressure term:

dv Vv, P

- = V60 —
7 \

(Euler equation for baryons) (2.8)

where P is the pressure. Also the first law of thermodynamics takes a more elaborated
form, from de/dt = 0 it now stands as:
de P Ae
— =V, v— Ale.p) (First law of thermodynamics) (2.9)
dt p p
where e is the internal energy per unit mass and A(e, p) is the cooling function which
accounts for the radiative losses of baryons. Finally these five equations are closed by

an equation of state, relating the pressure, the density and the internal energy:
P=(y—1)pe (2.10)

Assuming an ideal, monoatomic gas, 7 equals 5/3. The simulations that introduce
baryon particles and therefore solve not only equations (2.1), (2.2), (2.3) for pressure-
less fluid but also equations (2.1), (2.3), (2.8) and (2.9) to follow the baryonic fluid, are
called hydrodynamical simulations.

The history of hydrodynamical simulations, and more generally of numerical sim-
ulations, is the search for algorithms that solve these equations, or their comoving

equivalents, as fast as possible and even more important, with enough accuracy.

2.2.1 Algorithms

The advance in numerical simulations has become possible both by the rapid growth of
computer performance and by the implementation of ever more sophisticated numerical
algorithms. We can differentiate two crucial points in hydrodynamical simulations con-
cerning numerical algorithms. First one is to compute the Poisson term, V&, a problem
that is shared with N-Body simulations. The second one is to solve the motion of the
collisional baryonic matter. These are the two bottlenecks of any hydrodynamical sim-
ulation regarding the computational cost. Here, we briefly describe how physicists have
deal with them.

Gravitational force in the Newtonian limit falls as 1/72, hence it is a long range force
and we cannot ignore force due to distant particles. This makes the calculation of the
Poisson equation (2.3) one of the most time consuming tasks in numerical simulations.
Early simulations (White, 1976; Fall, 1978; Aarseth et al., 1979) employed the direct
summation method, also known as Particle-Particle (PP) method, for the gravitational

N-Body problem. This is, to sum directly the contributions of all individual particles
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to the gravitational potential
O(r)=-GY 1
j

m;

r—rjl? +62)%

(2.11)

It is important to remark that in the simulations used in astrophysics, the particles do
not represent individual dark matter or baryonic particles, but should be considered as
Monte Carlo realizations of the mass distribution, and therefore only collective, statis-
tical properties can be considered. In this kind of simulations, close encounters between
individual particles are irrelevant to the physical problem under consideration, and the
gravitational force between two particles is smoothed by introducing the gravitational
softening e. This softening reduces the spurious two-body relaxation which occurs when
the number of particles in the simulation is not large enough to represent correctly a
collisionless fluid and in some sense, determines the spatial resolution of the simulation.
Typically, € is chosen to be 1/20 — 1/50 of the mean inter-particle separation within the

simulation.

However, the PP method scales like O(N (N —1)). Therefore one needs to bypass the
increase in computational time for large numbers of particles with a more sophisticated
treatment when calculating the forces. One option is to organize the particles in a tree-
like structure. The force of a distant group of particles can be approximated by the
force due to a single pseudo-particle located at the center of mass of the group, with
mass equal to the total mass of the group of particles (Barnes & Hut, 1986; Dehnen,
2000). This method, usually called Tree method, scales as O(NlogN). Another way
for obtaining the forces is to numerically integrate Poisson equation. The idea is to use
the Fourier transform of this equation (a simple algebraic equation) combined with Fast
Fourier Transforms (FFT). This technique demands the introduction of a grid in order
to define the density. That is why this method is usually known as the Particle-Mesh
method (PM). It also scales as O(NlogN). From these three approaches (PP, Tree and
PM) have grown several hybrid methods that combine and/or improve them: TreePM,
PPPM (also known as P3M), Adaptative P3M (AP3M), ATreePM, etc.

The methods to solve the problem of adding the baryonic matter to the simulations
have been developed in the past decades. They fall into two categories: Lagrangian
methods or particle methods, which discretize mass, and Eulerian methods or grid-based
methods, which discretize space. Eulerian methods are based on the so-called Godunov’s
scheme for solving partial differential equations. In these methods the equation of
motion for the brayon component (Eq. 2.8) is solved based on structured or unstructured
grids, representing the fluid. The conservative variables are considered as piecewise
constant over the mesh cells at each time step and the time evolution is determined by
the exact solution of the Riemann problem (shock tube) at the inter-cell boundaries. On

the other hand most of the lagrangian methods used in astrophysics are based on the
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smoothed particle hydrodynamics (SPH) algorithm (Lucy, 1977; Gingold & Monaghan,
1977; Monaghan, 1992). The basic idea of SPH is to discretize the fluid by mass elements
(e.g. particles), rather than by volume elements as in the Eulerian methods. Therefore
the fluid properties like pressure, density, temperature, etc at any point can be found by
averaging over particles in the region using a weight function W. This weight function
(or kernel) leads to the definition of an individual smoothing length, h;, for each particle,
it is normalised and collapses to a delta function if the smoothing lenght approaches
zero. This length must be adapted such that each particle has a constant number of
neighbors, leading to a constant mass resolution independent of the density of the flow.

For a finite number of particles, N, the resulting estimate of the field, (f(r));, is then

given by:
N
Flrs) =" =L f(r)W (rs, i, by) (2.12)
= P
where 73 = |ri — 7j], mj is the mass of particle j, p; is the density at the location of

particle j, and h; is the smoothing length for the j-th particle, which specifies the extent
of the averaging volume around it. As a particular case of Equation 2.12, the smoothed

estimate of the local density would be
N
p(ri) =Y myW (ry, hi, hy) (2.13)
j=1

For a complete review on different techniques and algorithms applied in N-Body
simulations and hydrodynamical simulations, see Bagla (2005); Dolag et al. (2008) and

references therein. For a more historical perspective see Yepes (2001) and Suto (2003).

2.2.2 Initial Conditions

Once we have our code prepared, we need to provide it with an initial condition or
initial configuration for all the different particles. There are two main approaches to set
the initial conditions depending on how we plan to use hydrodynamical cosmological
codes. First one is called the pre-prepared scheme where the initial conditions are
usually set from analytical models based on observations. These initial conditions try
to model situations that would have arisen along the evolution of the systems under
consideration. This kind of simulations move in a huge range of scales from planet
formation (see Mayer et al., 2004, as a recent example) up to the interaction of galaxies
(see Gonzalez-Garcia et al., 2006, and references therein). This method has proved to
be a very powerful instrument to deepen into the physics of these problems with a very
high resolution.

The other approach, which is the one employed in this thesis, is the self-consistent

or cosmological scheme. This kind of simulations use the good agreement between
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observations of the large-scale distribution of galaxies and the CMB that link the growth
of structures with a Gaussian random field of initial density fluctuations (see Appendix
C.6 for more details). The two-point correlation function or its Fourier transform, the
power spectrum contain all the statistical properties of this field. The standard ad-
hoc procedure for setting up cosmological initial conditions is described in Efstathiou
et al. (1985) and references therein. The basic (but not trivial) idea is that given an
unperturbed particle/grid distribution, any desired linear fluctuation distribution can
be in principle generated using the Zeldovich approximation.

The main advantage of this method (i.e. self-consistent simulations), is that the
physics is introduced at a very general level, and the system evolves as a consequence.
We can follow the evolution of the dynamical and hydrodynamical properties of matter
in the Universe. These simulations play a very significant role in cosmology because
they can be considered as an experiment to verify theories of the origin and evolution of
the Universe. Self-consistent gravo-hydrodynamical simulations are useful not only as
tools for evolving complex systems, these can also be used to understand which effects
play a more important role in different phases of this evolution.

Of course this technique has some difficulties. Just to mention, one of the most
important complications is the discreteness effect, this relates with the problem of sam-
pling the continuous initial density field with a discrete distribution. The other one is
the possible effect that the perturbations at scales larger than the box size and at scales
smaller than the resolution (not taken into account) can have in the specific subject of
study of the simulation. For a more detailed description on how to generate cosmologi-
cal initial conditions and how to minimize these problems see Sirko (2005); Lukié et al.
(2007); Dolag et al. (2008).

2.2.3 Additional Physics

A realistic simulation should give us, at least, the same information as the one obtained
by observations. However there are several key effects that are important in the final
result but occur in regions that have a size many orders of magnitude smaller than
the spatial resolution of the simulation. They are, for example, the radiative cooling,
the star formation, supernova explosions and a large etcetera, most of them involved
with baryonic physics. In general these effects are difficult to include as vastly different
scales of relevance are involved. As a result, much of the treatment of them has remained
phenomenological.

One of the first relevant processes that need to be added is the radiative cooling.
This is the main process leading to the condensation of gas in the matter potential
wells and consequently to star and structure formation. We have already mentioned
it above including the cooling function in equation (2.9). In standard implementations

the cooling rates are estimated, making several simplification assumptions, directly as
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a function of local gas density and temperature A(py, T') = pgA(T) (Cen, 1992; Katz
et al., 1996). However this parameterization has been improved along time and now the
methods are more complex, taking into account more physics, as the molecular cooling
or the metal dependence. See Maio et al. (2007) for a current review on this topic.

Including radiative losses in simulations however, can cause an overcooling problem.
This is, as gas cools it tends to collapse but, as cooling depends on density this can
make that a very large fraction of the baryonic component can cool down and condense.
To deal with these issues, one has to include in the code a suitable recipe to convert the
reservoir of cold and dense gas into collisionless stars. Star formation is still a really open
issue in astrophysics (McKee & Ostriker, 2007) therefore its inclusion in hydrodynamical
simulations is a matter of debate. Even first attempts, Katz et al. (1992), showed that
the dynamics of the system is strongly altered with respect to simulations without star
formation. The scheme to transform gas into stars has not been changed since that date.
It has been widely tested and implemented in different kind of hydrodynamical codes
(see Stinson et al., 2006; Saitoh et al., 2008, and references therein). A more detailed
discussion about the star formation algorithm in the context of its implementation in
DEVA and its motivation can be found in Section 2.4.

Of course, once star formation is also included, one would like to model all the
feedback associated with star evolution: metal enrichment, supernova explosions, stellar
winds, ultraviolet (UV) radiation from stars, black holes, UV cosmic background (QSO
and AGN). Also, magnetic fields (Roettiger et al., 1999; Dolag et al., 1999), radiative
transfer (Iliev et al., 2006) and a very long etcetera are other interesting issues. A huge
range of these effects have been implemented in different codes with very interesting
results. Anyway, a full description of these processes is far outside of this thesis and we
point the interested reader to the recent reviews Thacker & Couchman (2000); Yepes
(2001); Dolag et al. (2008) and references therein.

2.3 State of the Art

Numerical simulations in astrophysics have turn to be a key tool for theoreticians and
observers in the last twenty years. Definitely, the most important step in numerical
simulation of the last years has been the appearance of parallel codes that allow running
simulations with an important increase in the number of particles (or mesh resolution)
(e.g. Springel et al., 2005; Gottloeber et al., 2006). Taking into account that the future
of supercomputers points towards an increase in the number of accessible CPUs rather
than on the speedup of individual CPUs, it is clear that this technique is going to be
basic in the future of numerical simulations. It is important to remark that this future
not only involves the run of numerical simulations by themselves but also, and maybe

even more important, their analysis pipelines.
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In regard to hydrodynamical simulations, it is clear that one focus in future will
be on incorporating further effects so that more complex problems can be studied in
detail. However, historically the implementation of more and more sub-scale effects in
cosmological simulations has responded to the rise of new problems concerning previous
inclusions of sub-scale physic, e.g. star formation for the overcooling problem, stellar
feedback to regulate the star formation (angular momentum catastrophe, low mass
halos problem, high star formation at low redshifts), etc (Moore et al., 1999a; Ceverino
& Klypin, 2007). As long as these issues are not fully understood by themselves and we
have a detailed theory for them, their phenomenological treatment would be, at least,
controversial and subject to continuous changes and improvements. In the next years
hydrodynamical simulations of the interstellar medium promise to be a key element
in shedding some light on these issues (Slyz et al., 2005; de Avillez & Breitschwerdst,
2007). Besides, it is interesting to remark that pure N-Body simulations have found
in the semi-analytical method (SAM) a very powerful ally to introduce baryon and
sub-scale physics in their results. It turns out that this method is very helpful, and
complementary to the hydrodynamical simulations, in the study of the effects of these

processes (see Baugh, 2006, and references therein).

The new era of precision cosmology requires new standards for the reliability and
accuracy of numerical simulations. Code comparison plays a crucial paper in this task.
A global comparison between N-body codes, hydrodynamical algorithms and different
additional physic implementations is mandatory. First serious attempts to do this have
started not a few years ago (Frenk et al., 1999). Last results show that although it seems
that we are going into the right direction, still much work is needed in order to attain
the required accuracy for upcoming surveys both in pure N-body and hydrodynamical
methods (Heitmann et al., 2005, 2007; Agertz et al., 2007). As a starting point, the
present agreement over a broad range of tests is gratifying, nevertheless, the lack of a
rigorous quantification of error is a serious barrier to future progress. As error control
requirements become more severe, the need for such a theory becomes further manifest.
In addition, as more (uncontrolled) physics is added, and subgrid modeling incorporated
as an essential part of the simulations, it becomes ever harder to extract error-controlled
results. The resulting uncertainties introduced by the parameterization of sub-resolution
physics have not yet been deeply explored in the context of code comparison, and any
comparison seems that would test the agreement between the recipes rather than identify

any computational error.

In the future, the demand on precision in both simulation techniques and captured
complexity of the physical processes within the simulations guarantee the computational

astrophysics as a challenge field.
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2.4 The Deva Code

In this Section we briefly describe DEVA, a Langrangian multistep AP3M-like-SPH code
designed to study galaxy formation and evolution in connection with the global cos-
mological model, that uses a formulation of SPH equations ensuring energy, entropy,
momentum and angular momentum conservation (Serna et al., 2003; Séiz et al., 2004).
All simulations analyzed in this thesis have been performed using the DEVA code. In
designing DEVA, particular attention has been paid that conservation laws of physics
(energy, entropy and momentum) are correctly implemented in the code, so that they
hold at all scales and under physical conditions relevant for galaxy assembly in a cos-
mological context. A parallel version of DEVA, P-DEVA has also been used in this thesis
(Serna et al. in preparation). This version shares the same fundamental algorithms with
DEVA and has been implemented in OpenMP, i.e., it is designed for shared memory

multiprocessing.

2.4.1 Gravity and Gas Dynamics

To solve the Poisson equation (Eq. 2.3) DEVA uses an AP3M algorithm. This method
combines two basic ideas over the PM algorithm (see previous Section for more details).
It adds a Particle-Particle correction for close neighbors to the force computed using
the PM. Also it uses spatially adaptive mesh refinements in regions with high particle
density where the clustering makes the number of neighbors to increase and the short-
range force computation starts to dominate, making the pure P3M algorithm to scale
as O(N(N — 1)) (Couchman, 1991).

Concerning the hydrodynamical motion, in DEVA conventional SPH formulation is
improved in order to overcome an important problem found related with the entropy
violation of the dynamical equation (Hernquist, 1993). The origin of these errors can be
found in overlook relevant terms in the dynamical equations associated with the space
dependence of the smoothing length, h. The idea in DEVA is to calculate these additional

terms, previously neglected.

Another important particularity of DEVA is the attention paid to angular momentum
conservation, a key point to enable disc formation in simulations (Dominguez-Tenreiro
et al., 1998). The code uses a formulation of SPH equation that is consistent with the
smoothed estimate for the different properties (density, etc) of the local gas (Eq. 2.12).
However this equation is symmetrized to ensure that the reciprocity principle holds
(that is, if at a given time the j** particle belongs to the neighbor list of the i** particle,
then it is mandatory that, at this same time, the i** particle belongs to the neighbor
list of the j*" particle), so that momentum and angular momentum are conserved. The

way to solve this issue is to use a symmetric kernel W (ryj, hi, hj) = VT/U- that is usually
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built as the kernel average:

Wi = 5V (5 i) + W (1, ) (2.14)

The implementation of this principle in an SPH code increases considerably the CPU
time per integration step, because a double loop on gas particles is necessary to evaluate
smoothing lengths.

Finally to get an accurate enough time integration scheme, and, at the same time,
to avoid that particles in denser volumes slow down the simulation, a PEC (predict-
evaluate-correct) scheme with individual timesteps has been developed and implemented
in the code. We refer the reader to Serna et al. (2003) for a detailed description of the

implementation of all these algorithms in DEVA.

2.4.2 Additional Physics

Cooling is also implemented in DEVA, taking the cooling curve from Tucker (1975) and
Bond et al. (1984) for an optically thin primordial mixture of H and He (X=0.76,
Y=0.24) in collisional equilibrium and in absence of any significant background radiation
field. Also, as we have pointed out, ideally a gravo-hydrodynamical code should describe
star formation (SF) at small scales as a result of evolution, and the possible ensuing
feedback effects. However, this would require an enormous dynamical range and very
high mass, time and space resolution, and these conditions cannot be met by the present
status of computer technology, and so, stellar processes have to be modeled, either
inspired in kpc or pc scale hydrodynamical simulations or other considerations (Katz
et al., 1992; Vazquez-Semadeni et al., 2000; Padoan et al., 2001; Avila-Reese & Vazquez-
Semadeni, 2001). One of these approaches and the one used in this thesis, is The
turbulent sequential star formation scenario (Elmegreen, 2002).

The interstellar medium (ISM) is assumed to be structured into different regions
characterized by specific values of their physical variables. These structures are thought
to form a multiscale hierarchy with different levels. The turbulent sequential star for-
mation scenario propounds that different physical processes operate at different levels
of this hierarchy to produce the interstellar medium gas structure. In particular, giant
molecular clouds and molecular clouds are supported against gravity by turbulence and
magnetic fields. Turbulence has a second role at this level: it produces gas compressions
at lower scales. Compressed volumes can then fragment into clumps and dense cores,
even if the cloud is globally stable because the average rms speed is large enough to give
global stability. The final step of the sequence is SF from dense core collapse, locally
triggered at this scale by SNe explosions and expanding shells, among other possibilities.

Not any dense core collapses into stars. A given core collapses when gravity over-

comes its kinetic energy support. A density threshold for core collapse appears at this
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scale, p., as well as a SF efficiency, ¢.. The ISM gas structure can be described by
means of the probability distribution function (pdf). Wada & Norman (2001) in their
simulations of whole galaxy models found a log-normal pdf. Stellar processes (stellar
winds, SNe explosions and so on) inject energy, momentum and metals into the ISM.
This very likely results into molecular cloud destruction. However, as the bulk ISM
could be stable and cloud-forming instabilities still operate in the cool phase, caused by
turbulent compressions, this stellar self-regulation of SF could not be very effective. De-
spite its complexity, SF (at least in disk galaxies) follows two simple empirical laws that
any deeper understanding of SF processes must explain: 1) the Kennicutt-Schmidt law
for the SF rate (Kennicutt, 1998). It represents an average over ~disk scales, and, as an
average, takes into consideration the whole complex physical processes involved into SF
at disk scales. 2) Moreover, a density threshold at this scale appears empirically (Mar-
tin & Kennicutt, 2001). Concerning the explanation of these empirical laws, Elmegreen
(2003) propounds that the Kennicutt-Schmidt law can be linked to the SF processes at
the scale of dense cores through the pdf: the SF efficiency at a given scale is proportional
to the fraction of gas at this scale verifying pgas > pc. Li, Mac Low, & Klessen (2005a,b),
on their turn, have reproduced the observed global and local Kennicutt-Schmidt laws,
and, also, have obtained star formation thresholds in disk galaxies in their three di-
mensional SPH simulations of SF in disk galaxies where no stellar explicit feedback has
been implemented. These works indicate that an agreement of astronomers about the
precise role of stellar feedback in the setting up of the two laws above, among other SF

characteristics, is far from being reached.

This scenario is implemented in DEVA through a parameterization similar to those
used by Katz et al. (1992) and Tissera et al. (1997). To allow a gas particle to be
converted into stars it has to fulfill two conditions. First one is that py,s must be lower
than a critical density peri; (as mentioned above this p..i is obtained empirically).
Also it has to be in a convergent flow, V' < 0. Once a particle of gas satisfies these
requirements, it is transformed into stars according with an inefficient Schmidt-law-like

transformation rule,

dpg _ _dps _ _cep
dt dt tg

(2.15)

where ¢, is a dimesionless star-formation efficiency parameter, and ¢4 is a characteristic
time-scale chosen to be equal to the maximum of the local gas-dynamical time ?4,,, =
(47Gp,)~ /2, and the local cooling time, teoo; = u/u (u = thermalenergy). Using Eq.
(2.15) expression for the star formation rate, the probability p that a gas particle forms
stars in a time At is

p=1—e A (2.16)

p is computed at each time step for all eligible gas particles and draw random numbers
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to decide which particles actually form stars.

2.5 Summary

Numerical simulations of three-dimensional self-gravitating fluid have become an indis-
pensable tool in cosmology. They are now routinely used to study from the non-linear
gravitational clustering of dark matter up to the evolution of the intergalactic gas. Sim-
ulations have provided us with an invaluable insight into the physical processes respon-
sible for the formation and evolution of galaxies and other structures in the Universe.
But, despite the advances made in the last decades, much remains to be done to fully
understand the formation of all these structures. It is clear that much of the near future
of this technique points more into the direction of a proper description and modelization
of the baryonic physic and into code comparison projects than to any bottleneck due to
the parallel computation technology.

Finally we have introduced DEVA, a Lagrangian code that uses an AP3M algorithm
to resolve gravity and a SPH implementation to compute hydrodynamics in which par-
ticular attention has been paid in that the conservation laws of physics (energy, entropy,
momentum) were correctly implemented in the code. DEVA has been used to run all the

simulations analyzed in this thesis.






Chapter 3

Formation and Evolution of

Elliptical Galaxies

3.1 Introduction

It is not easy to answer the question, what is a galaxy? One possible definition could
be: A galaxy is a self-gravitating system composed of an interstellar medium, stars, and
dark matter. Another definition, may be: A galazy is the environment in which stars
are born and die. Our galaxy, the Milky Way, is one of billions of such systems. Why
matter in the universe should be organized around such clear characteristic units is one
of the most outstanding cosmological questions.

The origin of cosmic structures, including galaxies of all types, is currently described
through the gravitational collapse of infinitesimal density fluctuations (the dynamical
evolution of these perturbations and the equations that govern them are discussed in
Chapter 2). After a decade of spectacular breakthroughs in physical cosmology, the
focus is beginning to shift away from determining the values of the basic cosmological
parameters towards attacking the problem of galaxy formation. A combination of fac-
tors is responsible for this change. Firstly, the concordance ACDM model have been
consolidating in the past years by a new generation of observational data sets concerning
the cosmic microwave background radiation, galaxy clustering and high redshift super-
novas (Spergel et al., 2007) giving a solid pillar to develop a complete theory of galaxy
formation and evolution'. Secondly, the 1990s saw the first detections of sizeable popu-
lations of galaxies at high redshifts (Abraham et al., 1996; Ferguson et al., 2000; Blain
et al., 2002; Beckwith et al., 2006; Scoville et al., 2007), allowing evolutionary trends
to be established. Finally, the increase in readily available computing power coupled
with the development of powerful new techniques, such as the one used in this thesis,

self-consistent hydrodynamical simulations (a full description of this method is given

'Further explanation of the standard cosmological model, its physical implication and its observa-
tional successes can be found in Appendix C
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in chapter 2), means that we are a in position to generate accurate predictions for the

properties of galaxies in hierarchical cosmologies.

This chapter introduces the Elliptical Galaxies in which this thesis is centered. We
also try to convince why the study of these objects is so exciting and compelling for
those who want to deepen into the galaxy formation and evolution process. In Sec-
tion 3.2, we start by providing the reader with a general overview of the last nearby
observations on this type of galaxies concerning their structural and kinematical profiles
and making a special emphasis in the Fundamental Plane relation. We also try to give
the theoretical framework to deal with all these data. The next Section 3.3 makes an
historical introduction of the two main scenarios of galaxy formation. We define several
important concepts on this subject and discuss the last observational and theoretical
constraints on this topic, focusing on the ones given by the observed evolution of the

elliptical population. A summary can be found in the last Section 3.4.

3.2 Elliptical Galaxies

Since the seminal work by Hubble (1936), we distinguish between three main classes
of galaxies based on their optical aspect: elliptical galaxies, disk galaxies and irregu-
lar. Elliptical galaxies have nearly-featureless oval forms with approximately elliptical
isophotes. Disk galaxies generally resemble the Milky Way; much of their luminosity is
contained in thin, rotating disks of stars. Irregular/peculiar galaxies follow neither the
disk nor elliptical plans; they lack any apparent symmetry. From these years we have
discovered much more information about all these types of galaxies and found that a

lot of other general properties are correlated with this morphological classification.

Among the different galaxy families, ellipticals are the easiest to study and those
that show the most precise regularities in their empirical properties, some times in the
form of tight correlations among their observable parameters. The interest of these
regularities lies in that they could encode a lot of relevant information on the physical
processes underlying the ellipticals formation and evolution. Elliptical galaxies exhibit
far less evidence for young stars, gas, or dust than do spiral galaxies, and have larger
random motion of stars than in spiral galaxies where the motion is a more ordered
rotation. In fact, they are dominated by old stellar populations, giving them red colors

and being also classified in the group of early-type galaxies (ETGs).

Despite of their interest, very few is known, both from the theoretical or observa-
tional points of view, about the mass or velocity distributions of the different elliptical

mass components (stars, dark matter, and hot and cold gas).
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3.2.1 Structure and Kinematical Profiles
3.2.1.1 Mass Distribution

There has been, nevertheless, an important recent progress on the photometric char-
acterization of elliptical galaxies, and, in fact, authors now agree that the Sérsic law
adequately describes the optical surface brightness profiles of most of them (Caon et al.,
1993; Trujillo et al., 2001; Bertin et al., 2002; Ravindranath et al., 2006). The Sérsic

law (Sérsic, 1968) can be written

Ilight(R) _ I[l)ightexp[—bn(R/Rleight)l/n], (3.1)

where 18" (R) is the surface brightness at projected distance R from the ellipticals
center, RUEM i the effective half-light radius, encompassing half the total galaxy lumi-
nosity, b, ~ 2n —1/340.009876/n, and n is the Sérsic shape parameter. Putting n = 4
the largely used de Vaucouleurs R'/* law (de Vaucouleurs, 1948) is recovered.

It is generally assumed that galaxies of any type are embedded in massive haloes
of dark matter. However, from the observational point of view, the importance and
the distribution of dark matter in elliptical galaxies is still a matter of a living debate.
Data on stellar kinematics from integrated-light spectra are very scarce beyond QREght,
making it difficult even to establish the presence of a dark matter halo (Kronawitter
et al., 2000; Magorrian & Ballantyne, 2001) through this method. Otherwise, the lack
of mass tracers at larger distances that can be interpreted without any ambiguity, has
historically hampered the proper mapping of the mass distribution at the outer regions
of elliptical galaxies. The situation is changing and a dramatic improvement is ex-
pected in the near future. In fact, several ongoing projects have already produced high
quality data on samples of ellipticals through different methods, for example: stellar
kinematics from integral-field spectroscopic measurements SAURON (de Zeeuw et al.,
2002; Cappellari et al., 2006); strong gravitational lensing CLASS (Myers et al., 1995);
LSD (Koopmans & Treu, 2003; Treu & Koopmans, 2004); SLACS (Koopmans et al.,
2006); stellar kinematics from planetary nebulae, PNs (Douglas et al., 2002), or glob-
ular cluster (Bergond et al., 2006) observations; and X-rays (O’Sullivan & Ponman,
2004b,a). In particular, the combination of high-quality stellar spectroscopy and strong
lensing analyses breaks the so-called mass-anisotropy degeneracy, giving strong indica-
tions that constant mass-to-light ratios can be ruled out at > 99% confidence level,
consistent with the presence of massive and extended dark matter haloes around, at
least, the massive lens ellipticals analyzed so far (Treu & Koopmans, 2004; Koopmans
et al., 2006). Moreover, these authors have also found that the dark matter and the
baryons mass density profiles combine in such a way that the total mass density profiles
can be fit by power-law expressions within their Einstein radii, whose slopes are consis-

tent with isothermality. Similar conclusions on the important amounts of dark matter
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inside the virial radii of ellipticals have been reached from weak lensing of L, galaxies
(Guzik & Seljak, 2002; Hoekstra et al., 2004), dynamical satellite studies (van den Bosch
et al., 2004) and X-ray analyses (Humphrey et al., 2006). Other observational results or
some of their interpretations, however, could suggest that the amounts of dark matter
in the haloes of some ellipticals are not that important. For example, Napolitano et al.
(2005) have analyzed the mass-to-light gradients of a sample of elliptical + SO galaxies,
and found that these are positive and important in massive, boxy elliptical galaxies,
but no very important for faint, disky elliptical galaxies. This has been confirmed by
Ferreras et al. (2005) using lensing analyses. This result is similar to what Romanowsky
et al. (2003) (see also, Romanowsky, 2006) have propounded from the study of random
velocities at the outskirts of elliptical galaxies through PN, found to be low, and first
interpreted by these authors as proving a dearth of dark matter in elliptical galaxies,
while Dekel et al. (2005) explain these large-radii low velocity dispersions as an effect

of anisotropy and triaxiality of the halo stellar populations of these galaxies.

Assuming that ellipticals are embedded in massive haloes of dark matter, a second
important concern is the possibility that their profiles have near-universal shapes. Here
most inputs come from numerical simulations because observational inputs are scarce.
When no dissipative processes are taken into account, spherically averaged dark matter
density profiles of relaxed haloes produced in N-body simulations have been found to be
well fitted by analytical expressions such that, once rescaled, give essentially a unique
mass density profile, determined by two parameters. These two parameters are usually
taken to be the total mass, Myi, and the concentration, ¢, or the energy content,
E. These two parameters are, on their turn, correlated (i.e., the mass-concentration
relation, see, for example, Bullock et al., 2001; Wechsler et al., 2002; Manrique et al.,
2003). When hydrodynamical forces and cooling processes enter the assembly of these
haloes and the baryonic objects they host, the dark matter profiles could be modified
in the regions where baryons are dynamically dominant, due to the so-called adiabatic
contraction (see, for example, Blumenthal et al., 1986; Dalcanton et al., 1997; Tissera &
Dominguez-Tenreiro, 1998; Gnedin et al., 2004; Gustafsson et al., 2006). So, the shapes
of dark matter haloes in ellipticals could deviate from the near-universal behavior of

dark matter haloes produced in purely N-body simulations.

Another important issue concerns the three dimensional cold baryon mass (i.e.,
stellar mass and cold gas) distribution, and, more particularly, its distribution relative to
the dark matter haloes: are ellipticals homologous systems or is the homology broken in

their stellar mass distribution or in their relative dark- versus bright-mass distribution?

In regard to the other baryon component, the hot gas, galaxy formation scenarios
generally predict that galaxies are embedded in haloes of hot diffuse gas, extending well
beyond the distribution of stars. These haloes are thought to consist of gravitationally

trapped gas with a temperature of millions of Kelvin. X-ray emission from elliptical
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galaxies (Matsushita, 2001; Humphrey et al., 2006), and more recently also from spirals
(Pedersen et al., 2006), confirms these predictions and proofs the presence of such hot
halos around galaxies. The new generation of X-ray instruments (Chandra, XMM)
confirms and extends previous findings in ellipticals. Recent Chandra measurements
(Humphrey et al., 2006) have determined their total baryon fractions inside their virial
radii. These fractions indicate that these systems, despite having stellar masses >5 x
10" M, are not baryonically closed at virial radius, i.e., their baryon fraction is lower
than the average cosmological one. Put in other words, as occurs for clusters (Allen
et al., 2004; Zhang et al., 2006), ellipticals miss baryons inside their virial radii. So, we
would need to answer a set of questions related with these issues: where the missing

baryons are? How did hot gas haloes form? Where and when is the gas heated?

3.2.1.2 Kinematics

Studies on the global kinematics have established that elliptical galaxies as a class
are supported by anisotropic velocity dispersions (Binney, 1976, 1978, e.g.). However,
concerning the three dimensional velocity distributions of the different elliptical com-
ponents, very few is known either. In particular, the anisotropy of the stellar three-
dimensional velocity dispersion tensor is hard to be observationally characterized. This
is an important issue, however, not only because anisotropy plays an important role
in the analyses of the elliptical dark matter content at several effective radii, but also
because it could keep fossil information about the physical processes involved in mass
assembly and stellar formation in elliptical galaxies. The relative behavior of the three-
dimensional velocity dispersion tensors for the stellar and the dark mass components
(i.e., the so-called kinematical segregation) is still more uncertain. There is not an
unambiguous observational input about its presence in ellipticals, or about its possible
systematic dependence with the elliptical mass scale. However, it is possible to measure
the shape of absorption lines, hence the Line-Of-Sight Velocity Distribution (LOSVD),
which will tell us about the velocity anisotropy and hence constrain the orbital families
(Bender & Nieto, 1990; Rix & White, 1992; van der Marel & Franx, 1993). Only for a
limited number of ellipticals are the Vios(R) or ojes(R) profiles available.

The LOSVD is often parameterized by the mean velocity in the line of sight Vj,
and velocity dispersion oy,s, plus higher order moments (h3, h4, ...) of a Gauss-Hermite
series. The h3 and h4 offer extra information on the asymmetric and symmetric de-
viation, respectively, away from a perfect Gaussian. Detailed kinematic studies often
reveal kinematic distinct cores (Emsellem et al., 2004, e.g.) and non-relaxed structures
(e.g. Balcells & Gonzalez, 1998) which may be related to the way the galaxy is formed
and to its merger history.

Observationally, a useful characterization of the velocity dispersion of an E galaxy is

provided by its central stellar line-of-sight velocity dispersion, og. Due to its interest, og
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has deserved an important attention in literature and it had been measured for several
E galaxy samples (Faber et al., 1987; Djorgovski & Davis, 1987; Dressler et al., 1987;
Lucey et al., 1991; Jorgensen et al., 1993, 1996; Kelson et al., 1997, 2000; Bernardi et al.,
2002, 2003a). Recently integral field (or 2D) spectroscopy has opened the possibility
for analyses of large scale kinematics and stellar population of galaxies (Bacon et al.,
2001).

In what follows we will deepen into the different observed correlations between pho-

tometric and kinematical parameters obtained for elliptical galaxies.

3.2.2 Parameter Correlations: The Fundamental Plane

Elliptical galaxies exhibit a bewildering variety of correlations between their kinemat-
ical and photometrical data. The strongest relation (i.e., with less scatter) found up
the moment is the one that relates the projected effective radius, Rleight (as measured
from the brightness profile), the mean surface brightness within the effective radius,
< Ilight > “and the central velocity dispersion, g (Djorgovski & Davis, 1987; Dressler
et al., 1987; Faber et al., 1987). In fact, this correlation is so tight that it is usually
said that elliptical galaxies lie on a Fundamental Plane (FP). The FP relation can be
written as

logo RIE™ = alogyy o9 + blogyy < I8 >, tc. (3.2)

Some previous known relation for ellipticals can be seen as a projection onto any two
axes out of the three variables. Examples of this projections are the effective radius
and surface brightness relation (Kormendy, 1977), the Faber-Jackson relation (Faber
& Jackson, 1976) between luminosity and velocity dispersion. The D,, — o relation
is another example, as it was constructed as a nearly edge-on projection of the FP
(Dressler et al., 1987).

In the last years, the Sloan Digital Sky Survey (SDSS, York et al., 2000) has sub-
stantially improved the statistics on elliptical samples. The sample selected by Bernardi
et al. (2003a) from the SDSS database in the summer of 2001, using morphological and
spectral criteria, contains 9000 ellipticals in the redshift range 0.01 < z < 0.3 and in
every environment from voids to groups to rich clusters. This is a larger number of el-
lipticals than in all the previously considered samples. Analyzes of their structural and
dynamical parameters have shown that the distributions of their luminosities L, radii
at half projected light, Rgght, and central line-of-sight velocity dispersions, oy (Bernardi
et al., 2003b,c), are approximately gaussian at any z. Moreover, a maximum likelihood
analysis indicates that the pairs of parameters op—L and Rgght—L, or their combina-
tions, such as the mass-to-luminosity ratio within the effective radii M./L and L (where
M, is the dynamical mass defined as M, = 2R,leight03 /G), show correlations consistent
with those previously established in literature, obtained from individual galaxy spectra

of smaller samples, such as the Faber-Jackson relation (Faber & Jackson, 1976); the
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D,—oy relation (Dressler et al., 1987); and the surface brightness —Ru®™ relation (Ko-
rmendy, 1977; Kormendy & Djorgovski, 1989), among others. Furthermore, early-type
galaxies in the SDSS have been found to have roughly constant stellar-mass-to-light
ratios (Kauffmann et al., 2003b,a; Padmanabhan et al., 2004). The values of the FP
coefficients for the SDSS elliptical sample are a ~ 1.5, similar in the four SDSS bands,
b~ —0.77, and ¢ ~ —8.7 (see their exact values in Bernardi et al., 2003c, Table 2) with
a small scatter. These SDSS results confirm previous ones, either in the optical (Lucey
et al., 1991; de Carvalho & Djorgovski, 1992; Bender et al., 1992; Jorgensen et al.,
1993; Prugniel & Simien, 1996; Jorgensen et al., 1996) or in the near-IR wavelengths
(Recillas-Cruz et al., 1990, 1991; Pahre et al., 1995; Mobasher et al., 1999), even if the
published values of a show larger values in the K-band than at shorter wavelengths
(see, for example, Pahre et al., 1998). La Barbera et al. (2008) have also confirmed
these results using a sample of ~1500 ETGs studied both in the optical (Data Release
5 of the SDSS) and the near infrared (UKIRT Infrared Deep Sky Survey, UIDSS). The
invariance of the FP with wave band is in agreement with Cappellari et al. (2006), who
found for 25 ETGs from the SAURON project the M /L versus L relation to have the
same slope in both the I and K bands.

Recently Hyde & Bernardi (2008a,b) have studied the Fundamental Plane using a
sample of 50000 early-type galaxies based on the Data Release Fourth of the SDSS.
They selected galaxies with velocity dispersions 60 < og < 400 km x s~ These authors
have confirmed previous results on the slope of the Fundamental Plane and pointed
out a possible dependence of the fit parameters on the range of L or gy in the sample
which may explain some of the relatively wide range of Fundamental Plane coefficients
in the literature. They also showed that the intrinsic scatter around this plane becomes

broader at low sizes/masses.

The existence of the FP and its small scatter has the important implication that
it provides us with a strong constraint when studying elliptical galaxy formation and
evolution (Bender et al., 1992; Guzman et al., 1993; Renzini & Ciotti, 1993). The
physical origin of the FP is not yet clear, but it must be a consequence of the physical
processes responsible for galaxy assembly. These processes built up early type galaxies
as dynamically hot systems whose configuration in phase space are close to equilibrium.
For this reason, the general framework to explain this relation is the virial theorem,
which relates the moment of inertia of a self-gravitating system with its kinetic energy
and potential energy. The scalar form of the virial theorem, for which one assumes that
the system is in steady state, so its moment of inertia is constant in time, can be written

as (see Binney & Tremaine, 1987, for the full demonstration):
2T +V =0 (3.3)

where T is the kinetic energy of the system and V its potential energy.
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The kinetic energy of an isolated system with mass, M, is just T = %Mvir <
(v8°9)2 >, where < (v5°)? > is the mean-square speed of the whole system, including
both dark and baryonic matter, and M, is its virial mass. We also use the definition

of a characteristic gravitational radius, related with the system’s mass and potential
tot __ GMvir2
g — |V

in the scalar virial equation, we obtain:

energy as 1 (Binney & Tremaine, 1987, chapter 2.5). Using these relations

< (vgot)Q > TgOt
G

My = cf (3.4)

where ¢t is a form factor of order unity.

All the quantities that appear in Equation (3.4) can be related with available ob-
servables. The virial mass with the luminosity L
Mvir M*

My, = : L 3.5

where we have also introduced the stellar mass of the galaxy, M,. Therefore we can
distinguish between the well known stellar-mass-to-light ratio M, /L and the total-to-
stellar mass ratio My, /M.

For the mean-square speed of the system, using the arithmetic mean, v5°, and the
standard deviation of°® we have that < (vi%)? >=< 28" >2 4 (58°%)2. As pointed out
before, observations indicate that ellipticals are systems that are supported by velocity
dispersion, so we can neglect the ordered motion term, v5* ~ 0. In this case, we
can just utilize the standard deviation to sample the kinetic energy, and, introducing
its observational equivalent, the central line-of-sight velocity dispersion of the stellar

component, og, obtain the following expression
< (5% 2 (o812 =3 . ¢, - 0 (3.6)

where the ¢, is a constant that relates the standard deviation of the whole system with
the observational line-of-sight velocity dispersion.

Additionally we define ¢;, to relate the gravitational radius with the observed effec-
tive radius, this is the projected effective radius obtained from the light curve of the
galaxy:

r;‘)t = ¢, - Rlsht (3.7)

Before going any further, to simplify, we can define a unique constant, ci\,/ilr, that
group together the different ones defined in Equations (3.4), (3.6) and (3.7)
M =¢cyor (3.8)

vir

It is important to remark for future discussions in this thesis that to do this transfor-
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mations, we have made three clearly different steps. Firstly considering the visible light
instead of the whole virialized system, implies that we need to go from the halo-virial
mass scale to the observed light galaxy scale. Therefore we have to take into account
two issues, the change of scales from the halo to the galaxy and the relation between the
stellar mass of this galaxy and the light that it produces, which is what we really see.
The third one is the fact that we have to use projected quantities, so a projection effect
is also included. All the constants and ratios introduced in the last equations account
for our ignorance of these effects.

If we replace in Equation (3.5) the last luminosity term, L, with the relation L =
or < I'e . RUEM? 4pq yse it with Equations (3.6) and (3.7) in Equation (3.4) we
obtain

M, ; _
) () o < T (3.9)

Rlight — 3 . CM . (Mvir

e 227G vir M*

that is, from the virial theorem we have predicted a relation between the same observ-
ables that are involved in the Fundamental Plane (see Equation 3.2). Besides, if one

assumes that My /M, - M, /L is independent of the elliptical luminosity or mass scale
M

and that the galaxies form a homologous family (i.e. c,;, is also constant) the appli-

cation of the virial theorem predicts the FP relation to be Ri%™ o od < Ileht >—1
But the observational results, described above, obtain a FP relation tilted respect to
the virial relation: R.lgight ox 05'2 < Jlight >0 08 This effect is known as the tilt of the
Fundamental Plane and it is supposed to be caused by the falsification of one (or both)
hypothesis made above.

Different authors interpret the tilt of the FP relative to the virial relation as caused
by different misassumptions that we comment briefly. Firstly we consider the M, /L

and the My, /M, ratios:

1.1) A first possibility is that the tilt is due to systematic changes of stellar age and
metallicity with galaxy mass, or, even, to changes of the slope of the stellar initial
mass function with galaxy mass, resulting in systematic changes in the stellar-
mass-to-light ratios, M, /L, with mass or luminosity (Zepf & Silk, 1996; Pahre
et al., 1998; Mobasher et al., 1999). But these effects could explain at most
only one third of the tilt value in the B-band (Tinsley, 1978; Dressler et al.,
1987; Prugniel & Simien, 1996; Renzini & Ciotti, 1993; Trujillo et al., 2004).
Furthermore, early-type galaxies in the SDSS have been found to have roughly
constant stellar-mass-to-light ratios (Kauffmann et al., 2003b,a). Anyhow, the
presence of a tilt in the K-band FP, where population effects are no important,
indicates that it is very difficult that the tilt is caused by stellar physics processes
alone, as Bender et al. (1992); Renzini & Ciotti (1993); Guzman et al. (1993);
Pahre et al. (1998); La Barbera et al. (2008), among other authors, have suggested.

1.2) A second possibility is that M, /L changes systematically with the mass scale
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because the total dark-to-visible mass ratio, My, /M, changes (see, for example,

Renzini & Ciotti, 1993; Pahre et al., 1998; Ciotti et al., 1996; Padmanabhan et al.,

2004; Cappellari et al., 2007; Hyde & Bernardi, 2008b; Tortora et al., 2009).
Otherwise, a dependence of cf\’/i[r on the mass scale could be caused by systematic

differences in:

2.1) the dark versus bright matter spatial distribution,

2.2) the kinematical segregation, the rotational support and/or velocity dispersion

anisotropy in the stellar component (dynamical non-homology),

2.3) systematic projection or other geometrical effects.

Taking into account these effects in the FP tilt, it is mandatory to model the galaxy
mass and velocity three-dimensional distributions and comparing the outputs with high
quality data.

Bender et al. (1992) considered effects 2.1) and 2.2); Ciotti et al. (1996) explore 1.2)
- 2.2) and conclude that a systematic increase in the dark matter content with mass,
or differences in its distribution, as well as a dependence of the Sérsic shape parameter
for the luminosity profiles with mass, may by themselves formally produce the tilt;
Padmanabhan et al. (2004) find evidence of effect 1.2) in SDSS data. Other authors
have also shown that allowing for broken homology, either dynamical (Busarello et al.,
1997), in the luminosity profiles (Trujillo et al., 2004), or both (Prugniel & Simien, 1997;
Graham & Colless, 1997; Pahre et al., 1998), brings the observed FP closer to Eq. (3.9).

One important source of ambiguity in observational data analysis comes from the
impossibility to get accurate measurements of the elliptical three-dimensional mass dis-
tributions (either dark, stellar or gaseous) and velocity distributions. Analytical models
give very interesting insights into these distributions as well as the physical processes
causing them, but are somewhat limited by symmetry considerations and other nec-
essary simplifying hypotheses. Self-consistent gravo-hydrodynamical simulations are a
very convenient tool to work out this problem, as they directly provide with complete
6-dimensional phase-space information on each constituent particle sampling a given
galaxy-like object formed in the simulation, that is, they give directly the mass and
velocity distributions of dark matter, gas and stars of each objet. This phase space
information would allow us to test whether or not the c}i¥ (that is, the cf,c, and ¢;)
coefficient, as well as the M, /M, ratios, do or do not systematically depend on the
mass scale. This is the issue addressed in Section 6.2, where we analyze whether the
dependence is such that the tilt and the scatter of the observed FP can be explained in
terms of the regularities in the structural and dynamical properties of ELOs formed in

self-consistent hydrodynamical simulations.
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3.2.2.1 Rotation versus Shape. Two kinds of Elliptical Galaxies?

Still under the scope of the virial theorem, we can also get a lot of information about
the internal motions of elliptical galaxies from the knowledge of their shapes and speeds
of rotation. The tensor virial theorem (see Binney & Tremaine, 1987) relates the kinetic
energy tensor Tj;;, the potential energy tensor,V;;, and the moment of inertia tensor I;;.
It is useful to split the kinetic energy tensor in the Kj; and II;; tensors, that account for
the ordered and random motions respectively, in the following form: T;; = K;; + %Hij.
The tensor virial theorem can be written

1d?L;

2 dt?

= 2K;; + I1;; + Vi (3.10)

The classical example is an axisymmetric system that rotates about its symmetry
axis (that we call the z-axis) and the system is seen edge-on (from the x-axis, for
example). In this case, thanks to the symmetry of the problem, we have V,, =V, and
Vij =0 (if i # j) and similar relations for II and K tensors. Assuming that the galaxy
is in equilibrium (d?I;;/dt?> = 0) the tensor virial Equation (3.10) yields to only two
nontrivial equations: 2K, + I, + V,; = 0 and 2K, 4+ I, + V., = 0. Dividing the

first equation by the second, we obtain

— = 3.11
2KZZ + HZZ VZZ ( )
Also if the only streaming motion is the rotation about z-axis we can write
. 1 00
2K;j = 5Mv?os 010 (3.12)
000

where M is the mass of the system and Ul205 is the mass-weighted mean-square rotation

speed. Now for the tensor associated with the random motion, II,

o O

I;; = Mo}, (3.13)

[
o = O
—
|
>,

where ¢ is the anisotropy parameter that accounts for the possibility that the random
dispersion in the z-axis is different from the dispersions in the x and y-axis. M is again
the mass of the system and ‘71205 is the mass-weighted random velocity along the line of

sight.
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We can now use Equations (3.12) and (3.13) in (3.11) and rewrite it as

V:ca: _ %‘/lcg)s + Jl203 (314)
V.. (1-— 5)‘71205

In systems whose isodensity surfaces are similar concentric ellipsoids, any ratio of
terms like V,,/V.. depends only on the ellipticity, esq, of these surfaces. This shape
parameter, e3¢ = 1 — <, is determined by measuring the major and minor axes, a and
¢, of the ellipsoid. So V., /V.. = f(e) and Equation (3.14)

WOS

Olos

= /2 flesa) - (1—0) —2 (3.15)

A reasonably accurate approximation for f(esq) (see Binney & Tremaine, 1987, Ta-
bles 2.1 and 2.2) is

€3d
flezg) 214+ ———— 3.16
additionally there are some interesting easy examples that can be illustrative. For a

. _ 1 22
non rotating galaxy v;,s = 0 then 1 — § = T = 2_633;.

In the case of an isotropic
rotating galaxy, § = 0, then
Wos ~ €3d
Olos 1- €3d

(3.17)

The observational application of these relationships is somewhat complicated by pro-
jection effects. Instead of vj,s and o, one has to use their observational counterparts.
These are V42, the maximum of the line-of-sight rotation curve and o, the central l.o.s.
velocity dispersion. The apparent ellipticity, €, is determined by measuring the major
and minor axes, a and b, of a chosen isophote where e = 1 — %. However, for isotropic
rotators (0 = 0) projection diminishes apparent ellipticity and rotation velocity alike in
such a way that Eq. (3.17) is still roughly correct (Binney & Tremaine, 1987).

Davies et al. (1983) studied the now classical Vj,4/00 vs. € diagram? for spheroids
(Illingworth, 1977; Binney, 1978). They found that luminous (and massive) elliptical
galaxies were characterized by low Vj,.:/00 and a fairly round aspect (low €), while
ellipticals with intermediate luminosity tend to have larger values of V4. /00 and e.
Some observations of near-by elliptical galaxies corroborate this division in two flavors
according to their luminosity (Lauer, 1985; Bender, 1988; Bender et al., 1989; Nieto
& Bender, 1989; Bender et al., 1994; Gerhard et al., 2001; Pellegrini, 2005; Cappellari
et al., 2007; Emsellem et al., 2007). On the one hand, high luminosity elliptical galaxies
show boxy isophotal deviations from perfect ellipses, low rotation and high velocity

dispersion. They are powerful emitters in X-rays and radio. On the other hand, low to

(Vm.ay;/dﬂ)obs
(Vimaz/00)theo
Here (Vinaz/00)obs is the observed relation while (Vimaz/00)theo is the theoretical value obtained from

Equation (3.17), this is, if the system is an oblate rotator supported by rotation. Note that (V/o)* ~ 1
for a rotationally flattened galaxy, and < 1 for a galaxy flattened by velocity anisotropy.

2 Another successful formulation for this diagram is (V/o)* vs ¢, where (V/o)* =



3.2 Elliptical Galaxies 35

intermediate luminosity elliptical galaxies show disky isophotal deviations with a fair
to important contribution of rotation as compared with velocity dispersion. Finally,
they are not associated to extended X-ray emission or radio loud objects. Because of all
these multiple correlations, Kormendy & Bender (1996) have proposed that boxyness
or diskyness be adopted as the primary classification criterion for elliptical galaxies.
Cappellari et al. (2007); Emsellem et al. (2007) proposed to use the rotational support
and to name them as slow and fast rotators. However, it is worth to mention that the
largest homogeneous set of V;,,4./0¢ and ellipticity values is currently around 90 early-
type objects. In this sense, Rothberg & Joseph (2006) has also studied this relation in
a sample of 51 nearby ellipticals classified as merger remnants finding some interesting
results which indicate that this picture is not so clear and that it is far from being closed.
Concerning the study of this diagram at higher redshifts, recently van der Marel & van
Dokkum (2007) presented evidences of evolution of the rotation support of spheroidal
systems since z = 0.5 pointing towards a decrease in the rotational support as the
redshift decreases. Present formation schemes should explain this dichotomy and its

possible evolution.

3.2.2.2 The Photometric Plane

Finally, since the first statistical studies of galaxies, a big effort has been done in looking
for empirical correlations involving only the photometric parameters, given the obser-
vational difficulties in measuring oy and other kinematical descriptors. An interesting
example is the Kormendy relation between Rleight and e (Kormendy, 1977) already dis-
cussed in previous sections under the Fundamental Plane framework. However, in the
last years, the fact that the projected luminosity profile of elliptical galaxies appears to
be universal and can be parameterized by the Sérsic law has generated a lot of interest
in the shape parameter n that characterize these profiles (see Section 3.2.1).

The shape parameter, n, is related to both the curvature of light profiles and to the
degree of concentration of light. It soon became clear that, in local elliptical samples,
n correlates with global quantities such as the total luminosity and effective radius
(Caon et al., 1993; Prugniel & Simien, 1997; Khosroshahi et al., 2000; D’Onofrio, 2001),
or ofg% (Graham, 2002; Vazdekis et al., 2004). Just as the Kormendy relation is a
projection of the FP, both the leght — ue and the Rl,ight — n relations may be seen
as projections of a more fundamental law among these three photometric parameters.
In logarithmic units, such a relation indeed exists and it is a plane referred to as the
Photometric Plane (PhP) recently detected in both near infrared (Khosroshahi et al.,
2000) and optical (Graham, 2002). The PHP has an intrinsic scatter that is only
slightly larger than that of the FP, therefore making this relation an interesting tool to
analyze the properties of galaxies at different redshifts. However, a definitive theoretical

interpretation is still lacking. Modeling the stars in ETG as a self-gravitating gas, Lima
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Neto et al. (1999) have recovered a PhP like relation (referred to as the entropic plane)
by assuming that the specific entropy (i.e., the entropy by mass unit) is constant for all
ETGs. Later, Mérquez et al. (2001) derived an energy - entropy (or mass - entropy) line
giving a possible explanation for the structural relations among photometric parameters.
Moreover, they also found out that the specific entropy increases as a consequence of
merging processes so offering a possible way to test the model against the observed
variation of the PhP with redshift. In this sense, even if still very incomplete, new data
(Coe et al., 2006; Ravindranath et al., 2006) pointed to an extension of these correlations
towards higher zs, that is, to a homogeneity of the elliptical population with z, except
that the objects became on average more compact, at fixed stellar mass, with increasing
z (Trujillo et al., 2007; Buitrago et al., 2008; van der Wel et al., 2008).

Some authors have recently argued that these two relations could be the projection
of a more fundamental one between the four parameters involved in them, following the
idea of underlying more general relations that gave rise to the Fundamental Plane and
the Photometric Plane (see Graham, 2002; Capozziello et al., 2007). However, as with
the Photometric Plane the theoretical interpretation of this Sersic Virial hyperplane is

still not clear.

3.2.3 Observational Problems, Theoretical Improvements

We see that the mass or velocity distributions of the different elliptical mass compo-
nents encode a lot of information about the physical origin of the different parameter
correlations observed, and, consequently, on the physics of their formation. We see also
that, unfortunately, observational methods, by themselves, suffer from some drawbacks
to deepen into these issues. A major problem is that the information on the intrin-
sic mass distribution is not directly available: we see the projected distributions (not
three-dimensional mass) either dark, stellar or gaseous. Another major caveat is that
the intrinsic 3D velocity distribution of galaxies is severely limited by projection, only
the line-of-sight velocity distributions can be inferred from galaxy spectra. And, so, the
interpretation of observational data is not always straightforward. To complement the
information provided by data and circumvent these drawbacks, analytical modeling is
largely used in literature (Kronawitter et al., 2000; Gerhard et al., 2001; Romanowsky
& Kochanek, 2001; Borriello et al., 2003; Padmanabhan et al., 2004; Mamon & Lokas,
2005a,b). They give very interesting insights into mass and velocity distributions, as
well as the physical processes causing them, but are somewhat limited by symmetry
considerations and other necessary simplifying hypotheses. These difficulties and limi-
tations could be circumvented should we have at our disposal complete information on
the phase-space of the galaxy constituents. This is not possible through observations,
but can be attained by numerical simulations.

The first authors who studied the formation and properties of elliptical galaxies by
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means of numerical methods used purely gravitatory pre-prepared simulations. Capelato
et al. (1995) first addressed the origin of the FP by analyzing the remnants of the dis-
sipationless mergers of two equal-mass one-component King models, and varying their
relative orbital energy and angular momentum, they showed that their merger rem-
nants lie in the FP. This result was extended by Dantas et al. (2003), who used one-
and two-component Hernquist models as progenitors, Gonzalez-Garcia & van Albada
(2003), based on Jaffe (1983) models; and by Boylan-Kolchin et al. (2005), who used
Hernquist+NFW models, confirming that further dissipationless mergers of objects on
the FP produce new objects in the FP. Nipoti et al. (2003) showed, in turn, that the
FP is well reproduced by dissipationless hierarchical equal-mass merging of one- and
two-component galaxy models, and by accretion with substantial angular momentum,
with the merging zero-order generation placed at the FP itself. They also found that
both the Faber-Jackson and the Kormendy relations are not reproduced by the simula-
tions, and conclude that dissipation must be a basic ingredient in elliptical formation.
That further dissipationless mergers preserve the Fundamental Plane but not its pro-
jections, was also pointed out by Boylan-Kolchin et al. (2005). In agreement with this
conclusion, Dantas et al. (2002, 2003) showed that the end products of dissipationless
collapse generally do not follow a FP-like correlation. Bekki (1998) first considered the
role of dissipation in elliptical formation through pre-prepared simulations. He adopted
the merger hypothesis (i.e.., ellipticals form by the mergers of two equal-mass gas-rich
spirals) and he focused on the role of the timescale for star formation in determining
the structural and kinematical properties of the merger remnants. He concluded that
the slope of the FP reflects the difference in the amount of dissipation the merger end
products have experienced according with their luminosity (or mass). Recently, Robert-
son et al. (2006) have confirmed this conclusion on the role of dissipative dynamics to

shape the FP, again through pre-prepared mergers of disk galaxies.

Apart from the origin of the FP, other aspects of the formation and evolution of
elliptical galaxies have been analyzed through pre-prepared simulations. For example,
a number of recent numerical simulations of galaxy encounters have dealt with the
population of the classical Viqz/00 vs € diagram and the formation of boxy and disky
objects (Naab & Burkert, 2003; Gonzalez-Garcia & Balcells, 2005; Gonzélez-Garcia &
van Albada, 2005; Bournaud et al., 2005; Naab et al., 2006; Robertson et al., 2006; Cox
et al., 2006; Gonzalez-Garcia et al., 2006; Jesseit et al., 2007). These studies indicate
that mergers between disk galaxies tend to produce too large rotation when compared
with present day massive elliptical galaxies. Besides, mergers between elliptical galaxies
do reproduce the observed characteristics. Khochfar & Burkert (2003); Kang et al.
(2007) (and references there in) present first attempts of semi-analytical modeling to

address the origin of the observed dichotomy in early type galaxies.

We see that pre-prepared simulations of merger events provide a very useful tool
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to work out the mass and velocity distributions of elliptical galaxies. They allow also
to find out their links with the processes involved in galaxy assembly, but they are
somewhat limited, for example by the fact that the probability of a particular initial
setup at a given z is not known a priori, and that mergers involving more than two
objects also occur and are frequent at high zs, so that some complementary information
must be provided, for example through semi-analytical models (Khochfar & Burkert,
2005; Naab et al., 2006).

To overcome these limitations, a convenient method is to study the processes in-
volved in galaxy formation in a cosmological context through self-consistent gravo-
hydrodynamical simulations (a description of this technique and the state of the art

can be found in Chapter 2).

Kobayashi (2005) has simulated the chemodynamical evolution of 74 fields with
different cosmological cold dark matter initial spectra set in slowly rotating spheres, each
of them with a 1.5 Mpc comoving radius and vacuum boundaries. So, these simulations
are not yet fully self-consistent. She succeeded in reproducing the observed global
scaling relations shown by elliptical galaxies, and, in particular, the FP relation, and
the surface-brightness profiles, as well as the color-magnitude and the mass-metallicity
relations. She also analyzed the role of major merger events and the timescales for star

formation in shaping the mass and sizes of remnants.

Concerning self-consistent hydrodynamical simulations, Sommer-Larsen et al. (2002)
presented first results on early-type galaxy formation in a cosmological context. Meza
et al. (2003) presented results of the dissipative formation of a compact elliptical galaxy
in the ACDM scenario. Kawata & Gibson (2003, 2005) and Gibson et al. (2007) studied
the X-ray and optical properties of virtual ellipticals formed in different simulations run
with their chemodynamical Tree/SPH code. Romeo et al. (2005) analyzed the galaxy
stellar populations formed in their simulations of galaxy clusters. Naab et al. (2007)
got, from cosmological initial conditions, a spheroidal system whose photometric and
kinematical properties agree with observations of ellipticals, in a scenario not including
feedback from supernovae or AGN and not requiring recent major mergers. Interesting
results on elliptical formation have also been obtained by De Lucia et al. (2006), from

a semi-analytic model of galaxy formation grafted to the Millennium Simulation.

However, detailed analyses of the mass and velocity distributions of samples of vir-
tual ellipticals formed in fully self-consistent hydrodynamical simulations, and, in par-
ticular, of the amount and distribution of dark matter relative to the bright matter
distribution, as well as of the kinematics of the dark and bright components, and their
successful comparison with observational data, are still missing. Filling this gap is one

of the aims of this thesis.
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3.3 DMonolithic Collapse vs Hierarchical Merging

The data discussed in the previous section provide us with a valuable tool that we can
use not only for asking us how are elliptical galaxies today but also to try to dig into
how they have been formed. As we have pointed out in the introduction of this chapter,
now that we have a solid framework, the concordance cosmological model, we should
try to go one step further and investigate the origin of the Hubble sequence. However,
understanding the formation of every type of galaxies and how they have evolved is still
controversial and an issue of living debate in the astrophysical community (Ellis & Silk,
2007).

In current ACDM galaxy formation and evolution scenarios at least two physical
phenomena could contribute to the mass assembly: spherical collapse and hierarchical
mergers (Peebles, 2002). Two main families of models may be recognized depending of
the importance of each of these phenomena: the monolithic scenario (Eggen et al., 1962;
Larson, 1974) and the hierarchical scenario (White & Rees, 1978; Cole et al., 1994).

Although the picture of spherical collapse is quite simple, it is very useful when
studying collapsed objects like galaxies. The physical description of the processes that
follow from primordial fluctuations can only be done analytically in cases of particular
symmetry. The simplest one is the collapse of an overdensity of dark matter, with a
spherical density profile given by the step function and a radius lower than the hori-
zon. In this case, we can use a Newtonian approach that shows that mass shells with
negative total energy expand up to a maximum radius and then recolapse, reaching the
equilibrium through violent relaxation. However, in the real world, radial symmetry is
not exact and the halo reaches a virial equilibrium state after a violent relaxation phase
(Peebles, 1980). Numerical simulations show the basic scalings derived from this ap-
proach to be roughly correct and useful for making simple analytic estimates (Bryan &
Norman, 1998; Silk & Bouwens, 2001). However, the general picture of spherical collapse
has been evolved during the last years to a more sophisticated one. Now, collapse as a
physical process involved in galaxy formation is a non symmetrical mechanism where
star formation occurs in small clumps of gas during a short phase of time. The modern
version of the classical monolithic collapse scenario puts the stress on elliptical assembly
out of gaseous material (that is, with dissipation), either in the form of a unique cloud or
of many gaseous clumps, but not out of pre-existing stars, with the stellar populations
forming at high z and on short timescales relative to spirals (Matteucci, 2003).

On the other hand, in the Cold Dark Matter scenario, halos form hierarchically
by the merging of smaller halos and accretion (see Chapter C for more details on this
subject) and the role of these mergers in the galaxy formation models cannot be ig-
nored. Then the hierarchical merging scenario propounds that galaxies form hierarchi-
cally through successive, random mergers of subunits (the so-called galaxy merger tree)

over a wide redshift range, in such a way that more massive ones form more likely at late
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time. The importance of mergers as an essential element in galaxy assembly, and their
evolution, is becoming more significant as soon as new observations are giving more
information of their frequency (below we will address the observational data available

on this subject).

3.3.1 Different Observational Constraints

In the monolithic collapse scenario, galaxies of different morphological types (spirals and
ellipticals) are born intrinsically different, whereas in the hierarchical merging scenario,
galaxies end up as spirals or ellipticals depending on the details of their merger history.
The hierarchical formation of giant galaxies is predicted in models to be the natural
outcome of major mergers (Barnes & Hernquist, 1992). Some indications are the visible
signs of past merging activity around giant elliptical galaxies, such as the so-called shells
or ripples found around 10% of all massive galaxies (e.g., Michard & Prugniel, 2004).
A significant number of central cluster galaxies also show evidence for recent merger
activity in the form of multiple nuclei and tidal features (e.g., Conselice et al., 2005).
Another piece of evidence for merger activity are decoupled cores found in the centers
of a great number of ellipticals (e.g., de Zeeuw et al., 2002). Results at high redshift
shows that a typical galaxy with a stellar mass of M, > 10'9M undergoes between
1-2 major mergers at z < 1.2 (Conselice et al., 2008). These authors also found that
for galaxies selected by M, > 10'9M, the merger fraction can be parameterized by
fm(2) = fo x (1 + z)™ with the power-law slope m = 2.3 + 0.4. They also found that
the merger rate of these galaxies increases linearly between z = 0.7 and z = 3. Other
methods of finding mergers through galaxy pair counts, either kinematic or spatially
projected (Le Fevre et al., 2000; Patton et al., 2002; Kartaltepe et al., 2007; Bluck et al.,
2009), agree with this result out to z ~ 1 (see De Propris et al., 2007, for a comparison
between the two methods). The fact that mergers are not rare events in the universe
and they are even more frequent at high redshifts, aims to indicate that they play an
important role in galaxy assembly.

Attempts to discriminate between the two models focus mostly on elliptical galaxies,
which are easier to study than spiral ones. As we have seen above, present-epoch ellip-
ticals form a very homogeneous family, with very similar intrinsic properties, compared
with the heterogeneous family of spirals. Furthermore, they are mostly composed of old
stellar populations, about as old as the universe (Thomas et al., 2005; Jimenez et al.,
2007). This fact is responsible for the most distinctive property of ellipticals: their
color. Ellipticals are the reddest galaxies in the local universe. They have little or no
star formation activity.

Due to their different formation times for ellipticals, these scenarios also yield re-
markably different predictions for the evolution in the number density of early-type

galaxies as a function of redshift.
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Joint gravitational lensing and dynamical analyses of elliptical lens galaxies have
evidenced their lack of significant structural and dynamical evolution at least out to
z ~ 1 (Treu & Koopmans, 2004), and, moreover, that the evolution of their average
stellar mass-to-light ratio, M5 /Lp, is consistent with the predictions of a scenario
of pure luminosity evolution of their stellar populations (Treu, 2004). Analyses of the
combined evolution of the luminosity-size and stellar mass-size relations (Trujillo et al.,
2004; MclIntosh et al., 2005) provide similar results on elliptical homogeneity. In fact,
these analyses show that the luminosity-size distribution evolves in a manner that, by
itself, is consistent with a passive evolution of the red early-type galaxy populations
since high z, but they do not find evidence of any strong structural evolution in the
stellar mass-size relation. However, it is important to remark that some recent results
point to an evolution in the mass-size relation for the very massive elliptical galaxies
since redshift z ~ 2 (Trujillo et al., 2007; Buitrago et al., 2008; van der Wel et al., 2008).

Weak lensing (Heymans et al., 2006) and optical studies of the Fundamental Plane
of early-type galaxies out to z ~ 1 (van Dokkum et al., 2001; van de Ven et al., 2003;
Wuyts et al., 2004; di Serego Alighieri et al., 2005; Treu et al., 2005; van Dokkum & van
der Marel, 2007) have traditionally described its evolution in terms of the evolution of
their stellar populations (see, however discussion in di Serego Alighieri et al., 2005). An
important convergent result is the confirmed existence of a population of old, relaxed,
massive (M5 > 101 M) spheroidal galaxies at intermediate zs (z ~ 1 —2). The K20
survey has first shown (Moriondo et al., 2000) that a high fraction of the so-called Ex-
tremely Red Object sample are in fact old spheroidal galaxies, found out to z ~ 1, with
formation redshifts of no later than z; ~ 2.5 — 3.4 if a unique starburst is assumed or
even earlier on if this hypothesis is relaxed (Cimatti et al., 2002). Cimatti et al. (2004)
have identified four massive (M@ > 10'!Mg) fully assembled spheroidal galaxies at
1.6 < z < 1.9 with old stellar populations and Stanford et al. (2004) a larger sample in
HDF-NICMOS data. Otherwise, recent studies of red galaxies in random cosmological
volumes (Bell et al., 2004; Drory et al., 2004; Fontana et al., 2004; McCarthy et al.,
2004; Wiklind et al., 2008) inferred that red massive galaxies existed at all observa-
tional epochs, and that their stellar populations at each epoch were predominantly old.
Mobasher et al. (2005) identified a candidate for a massive, evolved galaxy at z = 6.5.
These convergent results on elliptical homogeneity strongly suggest that i), a population
of massive, relaxed spheroids with old stellar populations (i.e., formed at a redshift of
zf > 2.4) was already at place by z ~ 1.5 or even by z ~ 2, ii) this population lacks
of significant structural and dynamical evolution, and, iii), their average luminosity

evolution is consistent with a passive evolution of their stellar populations.

Elliptical galaxies show age effects in their stellar populations, as inferred from the
observed correlation of the o/<Fe> ratios with mass (Thomas et al., 2002; Caldwell

et al., 2003; Bernardi et al., 2003d). More massive elliptical galaxies seem to have older
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means and narrower spreads in the age distributions of their stellar populations than less
massive ones (such effect is also known as the downsizing phenomenon, Thomas et al.,
2005). This result have been confirmed from different results on the FP evolution,
see for example (van der Wel et al., 2004; Treu et al., 2005; di Serego Alighieri et al.,
2005; Faber et al., 2007) and from estimations of the star formation rate for ellipticals
(Jimenez et al., 2005; Juneau et al., 2005; Thomas et al., 2005; Gallazzi et al., 2006;
Clemens et al., 2009). These age effects link elliptical dynamical properties with the
characteristics of their stellar populations, and are another manifestation of the physical

regularities underlying elliptical galaxy populations.

These results on elliptical homogeneity and regularity can be easily interpreted in
the context of a formation scenario where most elliptical mass assembles with dissi-
pation out of gaseous material and their stellar populations form at high z on short
timescales relative to spirals (i.e., the so-called monolithic collapse scenario). How-
ever, this scenario does not recover all the currently available observations on ellipticals
either. Important examples are: i), the growth of the total stellar mass bound up in
bright red galaxies by a factor of ~ 2 since z = 1 (Bell et al., 2004; Conselice et al., 2005;
Fontana et al., 2004; Drory et al., 2004; Bundy et al., 2005; Faber et al., 2007), implying
that the mass assembly of most ellipticals continued below z = 1, ii), the signatures of
merging activity observed out to intermediate zs (Le Fevre et al., 2000; Patton et al.,
2002; Conselice, 2003; Cassata et al., 2005; Conselice et al., 2008), in particular of major
dry mergers between spheroidal galaxies (van Dokkum et al., 1998; Bell et al., 2006),
that translate into a relatively high merger rate for massive galaxies even below z = 1,
iii), the need for a young stellar component in some elliptical galaxies (van Dokkum &
Ellis, 2003; van der Wel et al., 2004; Schiavon et al., 2006), or, more particularly, the
finding of blue cores (that is, recent star formation at the central regions), and inverse
color gradients in a 30% - 40% of the spheroidal galaxies in some samples out to z ~ 1.2
(Abraham et al., 1999; Menanteau et al., 2001, 2004, 2005; Lee et al., 2006), and, iv),
the observation by the Spitzer Space Telescope that an important fraction of massive
galaxies are undergoing at z ~ 0.7 a period of star formation above their past-averaged
star formation rate (Bell et al., 2005).

So, why we obtain this paradox? Before answering, we would like to address an
important point: a solid definition for galaxy formation. Some misunderstandings have
arisen because of defining galaxy formation with different concepts linked with just one
physical process and using the results to reinforce or discard a model. For example,
stellar age studies have been sometimes used to justify a monolithic collapse scenario,
while merger rates measurements to discuss the hierarchical scenario. We will see that
both physical processes can occur in a ACDM universe so although possible, it is
very difficult to really discard one or other model with these analyses. Probably this

problem has its origin on the facility for obtaining direct observational data of both
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physical phenomena. But, in this sense it is necessary to make a more general study,
trying to focus on measurements that really distinguish between models not only to
check the frequency of one physical process. Of course the drawback of this approach
is that this kind of measurements are harder to obtain from direct observations.
Anyway, defining galaxy formation will help us to look for a better observational
approximation and to know the frame where we have to keep our results. A common
proper definition is that one galaxy has ”formed” when around half of this mass was
already assembled (Peebles, 2002; Dominguez-Tenreiro et al., 2004). So, we saw that
in ACDM model both processes, collapse and hierarchical merging do occur but the
question would be which one of them, if any, is more important than the other and
dictates the time of assembly. At high redshift, assembly with a passive evolution
is postulated by a monolithic collapse scenario, while in hierarchical scenario major

mergers put time for assembly to lower redshifts.

3.4 Summary

The observational results above demand spheroids with passively evolving stellar pop-
ulations and, at the same time, assembling their stellar mass and undergoing some star
formation below z ~ 1. The question then arises why elliptical galaxies had their star
formation almost quenched at high z and when this happened relative to their mass as-
sembly. The lack of structural and dynamical evolution at intermediate zs of ellipticals
and the high formation redshift of most of their stars could result from the same phys-
ical processes involved in their formation, namely, the occurrence of dissipation mostly
at high z, with further mass assembly at intermediate and lower zs mainly through
non-dissipative processes.

One important clue for explaining how ellipticals were assembled is the very strong
correlations between their photometric and spectroscopic parameters that, as we pointed
out, make these galaxies a homogeneous population. Therefore, the first step in under-
standing how these galaxies formed should be to understand well these how correlations

arise.
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Chapter 4

Analysis of the Simulations

4.1 Introduction

The very first step of our work, and of the most compelling ones, is to select and run
the appropriate simulations in order to achieve our objectives. In what follows we will
explain all the phases from the point of deciding which simulations to run and why, up
to obtain robust samples of elliptical-like-objects. So, this chapter presents the roots
of this thesis. We would discuss all the important steps that have to be done between
these two points and stress up the relevance of the ones that can introduce significant
errors in the final results.

This chapter is organized as follows: the next section, 4.2, describes and discuss
what kind of simulations has been used in this thesis and why. Section 4.3 introduce
the Galaxy-like objects that appear in our hydrodynamical simulations and the different
techniques and problems to identify them. In section 4.4 is explained how Elliptical-like
objects (ELOs) are selected and their two fundamental scales are defined. Section 4.5
goes into detail about the different tools and algorithms used to calculate the physical
properties of ELOs. Finally section 4.6 summarizes the main ideas and results of this

chapter.

4.2 Simulations runs under study

As explained in chapter 2, self-consistent hydrodynamical simulations have a great com-
putational cost so it is very important to decide and program what kind of simulations
will be needed before starting to run them. This is one of the most important steps
when working with cosmological simulations. Having in mind the final goals of the
project while designing it, is crucial for its final success or failure.

The aim of this thesis is to study in depth the structural and kinematical properties of
early-type galaxies, so we want enough resolution to look inside these types of galaxies.

On the other hand we would like to make some reliable statistics. Then we want a
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significant sample of this kind of objects that extend in some orders of magnitude
in mass. Ideally we would like to run a very large box simulation with a resolution
of less than one kpc (i.e. with thousands of millions of particles), but sadly, this is
not possible nowadays even in the best computational centers of the world. Fixing
the number of particles of a simulation, something that is given by the computational
resources available, you can choose between a large box simulation (loosing resolution)
or a small box of great resolution simulation (loosing statistics). In the last years
galaxy formation and evolution have been studied by n-body simulations using these
two different approaches. For a more detailed explanation on this topic and the historical

options in different astrophysical problems see 2.1.

Taking into account all these aspects and considering last works in this field, includ-
ing previous runs with the DEVAcode (see Séiz et al., 2004; Dominguez-Tenreiro et al.,
2004), we decide to go for another approach. We have built the main set of our sample
by running five simulations ( EA simulations) using 64% dark matter and 64 baryon par-
ticles, with a mass of 1.29x 108 and 2.67 x 10"M,, respectively, to homogeneously sample
the density field in a periodic box of 10 Mpc side. In any run we use the framework of
a flat ACDM cosmological model, with 2z = 0.65, Qparyon = 0.06 and h = 0.65. These
values are in 1o of the cosmological concordance model values when simulations were
run, see Spergel et al. (2003) and Tegmark et al. (2004) for details. Observational data
in the last four years has changed very little the general framework of this concordance
model, specially these parameters (2,Qbaryon,n) but for a more precise knowledge of
their exact values (see Spergel et al., 2007; Dunkley et al., 2009). We always used a fixed
smoothing length in physical coordinates that in this case takes the value of ¢ = 0.0015
(hyooMpc), so the maximum spatial resolution for all these simulations was 2.3 (g5
kpc). Therefore with this size of box and number of particles we reach a resolution high
enough to fulfill our objectives of studying the structure and kinematics of early-type
galaxies. Furthermore to solve also the statistics issue, apart from running up to five
simulations, we have tried to simulate the areas of the universe where ellipticals are
more abundant. The power spectrum normalization, og, has been set up to mimic an
active region of the universe (Evrard, Silk, & Szalay, 1990) in which elliptical galaxies
are more frequent. All these simulations also share the same star formation parameters
(Pthres = 6 x 1072° gr cm =3, ¢, = 0.3) and differ in the seed used to build up the initial

conditions.

As important as building the sample is studying the different systematics that we
can have in our results. Consequently we have also run several simulations in order to
check for the four more important ones: variations in the star formation parameters,
variations in the cosmological model, resolution effects and box size. We will try to
discuss their possible importance in all the different results of this thesis. For a general

overview on how these and other systematics errors could affect the results on this thesis,
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see section 6.5.

To test the role of SF parameterization, the same initial conditions have been run
with different SF parameters (pipres = 1.8 x 10724 gr em 3, ¢, = 0.1) making SF more
difficult, contributing another set of five simulations (hereafter, the EB simulations).
We have also run a cosmological test simulation (FC simulation) with slight variations

in the cosmological values but with the same star formation parameters as FA.

Concerning spatial resolution we run three simulations (ED simulations). First we
made two simulations that share the same initial conditions, cosmological parameters
and box size but differ in the number of particles. One of them uses the same amount
of particles as all the previous runs (7705), 2 x 643 particles, and the other one uses
eight times more particles (6705), this is 1283 dark matter and 128 baryon particles,
with a mass resolution of 1.67 x 107 and 2.58 x 10°M), respectively. The smoothing
length used in the low resolution simulation was e = 0.0015 (hl_oloM pc) and in the high
resolution simulation was € = 0.00075 (hfoloM pc), hence having a spatial resolution of
2.14 (hog kpc) and 1.07 (hoy kpc) respectively. We have also run one simulation (7714)
that share all cosmology and SF parameters with FA simulations but with eight times
more particles, in order to have results that can be directly compared with the EA

sample.

We are also interested in testing the effect of increasing the box size, Ly of the
simulation. It is a well established fact (see, for example, Bagla, 2005) that Ly,, affects
the two-point correlation function and the mass function (and, consequently, the global
tidal field is also changed), because reducing Ly, is equivalent to putting a large-scale

cut-off to the power spectrum of perturbations.

An important point to note is that Ly, has an impact on the Ry = 0gin/0scf¢ ratio,
where og;, is the input normalization parameter in the algorithm used to build-up the
initial conditions of the simulation, and og.fs is the linear mass variance in spheres of
radius 8h~! Mpc at z = 0. In fact og, ¢ decreases with decreasing Ly, (see discussion in
Sirko, 2005), so that R, increases (Power & Knebe, 2006; Gelb & Bertschinger, 1994).
These differences can already be appreciated in the initial conditions as numerically
set by any standard algorithm. We have found that kept og;, and changing Ly, the
normalized distribution of initial peculiar velocities changes and convergence is only
attained for Ly, > 100 Mpc. Note that this effect can be compensated for by tuning

ogin (see below).

As a consequence of the power spectrum cut-off, when L, decreases there is a
deficit of massive objects, and the clustering length decreases, so that simulations with
large Lpo, (> 100 Mpc) are required in order to correctly get convergence on the results

for the two-point correlation, og.rs and mass functions.

However, this does not imply that the modification of these global properties of the

large scale structure has necessarily an impact on the inner properties of the small scale
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systems (galaxies and their halos). This problem has been addressed in detail for dark
matter halos by Power & Knebe (2006). They have established that the box size of the
simulations has an impact on i) 0., i) the masses of the most massive halos. Both are
reduced as the box size decreases, confirming previous findings. That is, lowering Lpo,
implies a reduction of the number of massive systems, that are formed in the more active
environments. Consequently, lower Ly, also implies a deficit of massive environments
(groups and clusters of galaxies) relative to larger Ly,, simulations.

These authors also found that these modifications have relatively little effect on the
internal properties of the halos (concentration, spin parameter, triaxiality, see Figures
6 to 11 of Power & Knebe, 2006). There is only a small effect on the spin parameter,
independent of halo mass and Ly, size. This is small: they found that the halo spin
parameter is on average only a 15 percent lower.

These authors interpret their results about shape invariance on the Ly,, size (or
power spectrum truncation) in the light of the existence of a universal dark matter mass
profile (Navarro et al., 1996; Manrique et al., 2003, see the two last sections of their
paper). The small effects noted in the spin distribution are interpreted as an imprint of
the angular momentum acquired during the linear growth of the perturbations (Navarro
et al., 2004a). An important point to note is that in their work, Power & Knebe (2006)
use the same input og;, irrespective the power spectrum cut-off.

Our work has to do with virtual elliptical galaxies, stellar systems placed inside
massive dark matter halos. To our best knowledge, there does not exist by the moment
a study on how Ly, affects the shape and rotation properties of these objects. However,
because their mass assembly process reflects that of dark matter halos (see Chapter 9),
we cannot expect that the impact of decreasing Ly, is that important.

Therefore, to test this point we run two simulations in a periodic box of 20 Mpc
side (twice that of FA and EB runs) and using 8 times more particles (EF'1 and EF2
runs) fixing the cosmological and star formation parameters as in FA simulations.

We have also used one simulation with a periodic box of 80 Mpc side (EF3). Cos-
mological parameters were set using last observational results! (Dunkley et al., 2009).
However due to computational costs this simulation only include hydrodynamical calcu-
lation in a sub-box of 27 Mpc side. The number of dark matter and baryonic particles
in this volume is fixed to obtain the same resolution as for the other EF' simulations.
Moreover, in order to do a proper comparison, we will study just a sub-box of 20 Mpc
side of this simulation. It is important to remark that this simulation is the first result
of a major ongoing project in which the full box of 80 Mpc side, including the hydro-
dynamical calculation, is also being simulated. However, as this simulation takes too
long to reach redshift zero and also in order to have some test samples, we are running

a total of nine simulations as the FF'3 one and five simulations with an hydrodynamical

"http://lambda.gsfc.nasa.gov/product/map/current /params/lcdm_sz_lens_run_wmap5_bao_snall_lyapost.cfm
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sub-box of 40 Mpc side. These simulations cover different subvolumes of the bigger box
and by the time of closing this thesis, only EF3 has reached redshift zero.

Due to the effect of Ly,, on R, (see above), one has to be careful when analyzing
the effects of varying Lp.., and try to disentangle as much as possible the effects due
to the changes of the effective normalization (that can be overcome to some extent by
tuning og;, relative to Ly, ), to the changes induced by the presence of longer wave
perturbations as Ly, increases.

The values of the parameters used in each simulation defining the global cosmological
models, star formation parameterization, box side, etc. are given in Table 4.1.

Initial conditions are set at high z as a Monte Carlo realization of the field of pri-
mordial fluctuations in a given cosmological model. For all these simulations they were
performed using the same scheme used by Couchman et al. (1995) which follows the basic
ideas explained in Section 2.2. Concretely, we have used MPGRAFIC (Prunet et al.,
2008) to create the initial conditions of the EF'3 run and INITDEVA (Bertschinger,
1995) for the rest of simulations. All the simulations with Ly, = 10Mpc started at
z = 0 and were run up to z = 0 using the sequential version of DEVA, but for the ED
sample simulations which were performed using the parallelized version P-DEVA. ED,
EF1 and EF2 simulations run in an Altix 3700 machine of the Centro de Computacién
Cientifica (UAM, Spain)? up to z = 0 using P-DEVA. EF3 also used P-DEVA code but
run in the Leibniz Supercomputing Centre®. The initial redshift for the EF simulations
was calculated using GRAFIC2 (Bertschinger, 2001). They started before any mode
simulated become non-linear (z = 33 for the EF'1-2 runs and z = 50 for the EF'3 run
respectively).

All the important information of the simulation is saved at different redshifts in a
file. This file contains a header with all the global parameters concerning the simulation
followed by the positions, velocities, mass, etc. for each particle. We have saved around
40 timesteps for each simulation in our sample at redshifts in which we were interested.
For the simulation 8716 (EB) we have saved around 2000 timesteps to have a high
temporal resolution simulation. This will allow us to perform detailed temporal studies
and videos. In Figure 4.1 it is shown all the gas particles of one of the EA simulations
when it has reached redshift z = 0.

2See http://www.uam.es/investigacion/servicios/computacion/ for more details.
3http://www.Irz-muenchen.de/wir/intro/en/
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Z =0,000

Figure 4.1: View of all the gas particles of one of the FA simulations at z = 0. Color of
the gas particles stands for their SPH density.
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4.3 Galaxy-like objects in the simulations

SPH simulations with CDM initial conditions and radiative cooling lead to the formation
of dense groups of baryonic particles that have sizes and masses comparable to the
luminous regions of observed galaxies (Cen, 1992; Katz et al., 1992; Evrard et al., 1994).
If star formation is included, these dense groups are the regions where stars form and
tend to group in Galaxy-like objects (hereafter GLOs, Katz et al., 1996; Dominguez-
Tenreiro et al., 2003, for DEVA code). The structure and kinematical properties of
these objects and their formation and evolution are the main topic of this thesis, so
the identification of distinct particle groups at different redshifts underlies all of our
subsequent analysis.

Many different algorithms to identify groups of particles in N-Body simulations have
been proposed. We want to address here the question of how the choice of an algorithm
can affect the properties of GLOs. To do this, we have used two of the most popular
algorithms: FOF (friends-of-friends Huchra & Geller, 1982; Davis et al., 1985) and
SKID (Stadel et al., 1997; Weinberg et al., 1997). With FOF, particles are joined into
groups if the separation to the nearest neighbor is less than a given threshold, called the
linking length, b, which is the only free parameter for this algorithm. We will express b in
units of the mean particle separation. The mean particle separation between N3 baryon
particles uniformly distributed in a simple cubic lattice over a cube box of size L, is L/N.
Then, 1/b% corresponds to an overdensity, and FOF approximately groups together
particles which lie inside the corresponding level surfaces. On the other hand, SKID is
a multiple-step process. The basic algorithm consists of, first determining the smoothed
density field, then moving particles upward along the gradient of this density field using
a heuristic equation of motion that forces them to collect at local density maxima.
Afterwards, it defines the approximate group to be the set of particles identified with a
FOF algorithm with a linking length, b, and finally, particles that are not gravitationally
bound to the groups identified in the previous step are removed. So, SKID has more
than one free parameter, being the most important ones: the linking length, b, the

number of nearest neighbors used in calculating the density gradients, NEEIZZI}LD )
SKID

min

and just
for gas particles, a minimum density threshold, p , and a maximum temperature

threshold, TSEID

max

To make our study, we have first looked at one of the simplest quantity that char-
acterizes the galaxy populations in the simulations: the mass function. Although, as
pointed above, our aim is not to make a study of all the galaxies that appear in our
simulations, examining this characteristic can show a first idea of the numerical factors
that come into play in the identification of galaxies in cosmological simulations. Also,
this kind of analysis has been used before to compare group identification algorithms
in the context of dark matter halos finding (Bertschinger & Gelb, 1991; Goetz et al.,

1998). Following the work of these last authors, we have run several times the FOF
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and SKID algorithms over the same simulation varying their free parameters (see Table
4.2). We have chosen ED simulations because it will also allow us to control for pos-
sible resolution effects. First of all we have run FOF algorithm using b = 0.1 (run I),
b= 0.2 (run II), b = 0.25 (run III) and b = 0.02 (run IV), in units of the mean particle
separation. The three first values cover the range used in the literature. The last one
is a test run to see what happens if the linking length is decreased up to a few percent
of the mean particle separation. In the ED simulation of 642 baryonic particles and 10
h7_01M pc box, the mean particle separation is 156.25 (h;olkpc). The tests with SKID
were done in the following way: first we study the two more important parameters of

this algorithm, b and NSKIP (runs V, VI, VII, VIII, IX, X, XIII) and after we study

neigh
SKID TSKID

min and max

the effects of the density and temperature limits for gas particles, p
(runs XI, XIT and XIV). All the runs were done using eight particles as the lower limit
of a group. The same tests have been also done with the ED high resolution simulation
(for which the mean particle separation is 78.13 (hoy kpc)). First we present results for

the 2 x 643 particles ED simulation. Afterwards it will be discussed the high resolution

results.
Run Algorithm b Né’;fgh f,’ff,‘f Tskid
(1) (2) GG (5) (6)
I FOF 0.1 - - -
11 FOF 0.2 - - -

IT1 FOF 0.25 - - -
v FOF 0.02 - -
1x10%° K

\Y% SKID 0.1 60 0

VI SKID 0.1 40 0 1x 103 K
VII SKID 0.1 20 0 1x 103 K
VIII SKID 0.2 40 0 1x10%0 K
IX SKID 0.2 20 0 1x10%° K
X SKID 0.25 40 0 1x10%0 K
X1 SKID 0.1 40 0 3x10* K
XII SKID 0.1 40 103 perie - 3 x 104 K
XIII SKID 0.02 40 0 1x 103 K

XIV SKID 0.02 40 103 perie - 3 x 104 K

Table 4.2: Parameters for the different test runs of the group finding algorithms.

Results for FOF tests can be seen in Figure 4.2(a). The mass function obtained with
FOF does not depend upon the typical values of b, these are 0.1, 0.2 and 0.25. Even
with a lower value of b, as 0.02, we found no significant variations in the mass function.
Concerning the SKID tests we found that, as well as in the FOF tests, variations of
the linking length parameter do not produce significant changes in the mass function
as long as all the other free parameters are keep constant. However we found a strong

dependence of the mass function upon the resolution at which the density gradients
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are calculated, that is, the number of nearest neighbors used by the SKID algorithm,

SKID
Nneigh ’

preferably large halos, since, there are few density maxima present inside the volume

A low resolution of the density field (large number of neighbors) produces

towards which all the particles are moved. Each of the density maxima will then end up
with a large number of particles, and hence larger groups are formed. On the other hand,
with high resolution of the density field (small number of neighbors), it becomes bumpy,
and, except for the densest regions, each particle will correspond to a density maximum
at its location. In this case the SKID algorithm become close to plain FOF, specially in
the more massive part of the mass function but this bumpy effect make that the number
of low mass halos increases. In Figures 4.2(b) and 4.2(c) we show the relevant results
of the SKID tests. We also found that the temperature and density threshold can play
a key role in the final mass function. Both quantities, specially the temperature, seem
to diminish the amount of low mass groups, indicating that there were some of these
groups that were formed by high temperature and low density particles. As pointed
above this problem is due the way SKID calculates the maximum density points, so it

is important to try to minimize its effects by using these two limits.

Similar conclusions are also observed by Goetz et al. (1998) in their tests of these
algorithms in the context of dark matter halos finding and the reconstruction of the
dark matter halo mass function. The main difference is that the dependence of the
mass function with the linking length parameter is much more important in the context
of dark matter halos. This is because dissipation greatly increases the density of cooled
baryons with respect to the local background. However is important to remark that
even in this situation, we have seen that the mass function depends on the group finding

algorithm and, especially for SKID, in the parameters used.

Once we have studied the mass function obtained from the different algorithms, we
have calculated the center of mass of all the GLOs found in the simulations. Focusing
on the forty more massive GLOs, we have observed that the order of them varies a little
depending on each run and that some of them disappear in high linking length tests
because they are linked to a close bigger GLO. However the center of mass obtained in
general agrees between different tests. Considering that this work is primary interested
in the most massive GLOs of the simulations, we have decided to go one step further
and make a more detailed comparison between the masses of the GLOs obtained by
different algorithms. In order to have a proper mass estimation to compare with, we
have calculated one by one, the real baryonic mass of the fifteen more massive GLOs of
the simulation that are found in all the tests (see next Section, 4.4, for more details on
this calculation for GLOs). Figure 4.3 shows the normalized difference between the mass
given by one of the different algorithm tests, Mgy, and the mass calculated manually
object by object, My,qn, versus M,,qn. The results are really interesting. The masses

obtained by the algorithms can differ by more than a 100% in the most massive objects
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and are in general quite far from the real values. The origin of this systematic in the
estimation of mass is due to the presence of satellites. These satellites are close enough
to be not separated from the main object by the algorithms if b is too big. Although
with errors between 1% and 20% (or even 60% in one extreme case), the best results
are obtained by test IV and test XIV, the tests of lower linking length values used for
both algorithms.

We have confirmed that the most basic property of a GLO, as its mass, depends upon
the choice of group finding algorithm and its free parameters. Also we cannot talk about
a better group finding algorithm but about a good selection of the free parameters. In
this framework, we want to notice that analyzing just the mass function can induce to
wrong conclusions about the goodness of the group finding algorithms. For example,
the linking length parameter plays an important role in the final mass of the galaxy-like
objects but this role is not appreciated when the mass function is built. Some direct
measurements, as the mass or the velocity dispersion (Murante et al., 2007), should be

done before arising to any conclusion.

In regard to the high resolution tests we show main results in Figure 4.4. First, FOF
tests give identical mass functions irrespective of the resolution of the simulation. SKID
results are more complex. The dependence of the mass function with b and NfengIhD
shows exactly the same trends that we had found before. The density and temperature
thresholds also produce same effects. In other words, high resolution mass functions are
exactly the same as the ones presented in Figure 4.2 but rescaled to a higher resolution.
However, there are some interesting facts that deserve to be mentioned. The number
of neighbors used by the SKID algorithm should be also rescaled depending of the

resolution of the simulation.

We want to stress out the importance of these results in the context of some recent
works that use the mass obtained by these algorithms to study the evolution, merger
history or gas accretion history of galaxy-like objects (see, for example Murali et al.,
2002). Taking into account that in this kind of studies it is impossible to do a one-by-
one object analysis, it is important to try to take into account the possible errors that
may came from the use of these algorithms. The best approximation should be to make
the same study using different parameters of the group finding algorithms to find out

the systematics in the final results.

However, from our analysis we have reached some general conclusions. In the case
of just using the FOF algorithm, we have found that it is better to make the runs with
a low linking length value, between 0.02 and 0.05. Mass function is not significantly
affected by this quantity and the best mass estimations are obtained with low values
of b. Just for the same reasons, we have also found that for SKID the use of low
values of b are preferable too. Concerning, N;?e[fgIhD , the best option is the one suggested

by Murante et al. (2007). Run SKID using three different values of Nfef.gIhD (20, 40
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Figure 4.4: Mass function profiles obtained in test IV (left) and test XIV (right) from
the EC simulations. Red line stands for 2 x 642 particles simulation and blue line for
the 2 x 1283 simulation.

and 60 for example) and define a galaxy to be the set of particles which belong to a
SKID group with anyone of the above N3XID

neigh

values. We also think that using the
temperature and density thresholds for gas particles is a must, in order to control the
high increase of low mass GLO of high temperature and low density particles that this
method produces. This will be especially important as we go to higher redshifts where
gas is more abundant and can enclose or be adjacent of different clumps of star particles.
Therefore, we encourage using just star particles for GLOs identification at these high
redshifts (see Murante et al., 2007, for similar conclusions).

Finally, all these tests and investigations with the group finding algorithms con-
vinced us to use them just as a tool to obtain the mass centers of the GLOs in our
simulations. We have decided to do a one-by-one analysis of our objects in order to
determine their mass and all their fundamental parameters. Even to optimize calcula-
tions of the coordinates centers of GLOs obtained from the algorithms a sigma-clipping
algorithm was used. This type of algorithm minimizes the phase-space of a group of
particles and helps to obtain better values of the mass center especially in very close

systems that are dynamically linked.

4.4 Building Elliptical-Like-Objects (ELO) Samples

GLOs that appear in DEVA simulation span a range of morphologies: disk-like objects
(DLOs), spheroid or elliptical objects (ELOs) and irregular objects. See Figures 4.5, 4.6
and 4.7 for some visual examples.

We are interested in building a large sample of elliptical-like objects (hereafter ELOs)
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at different redshifts: z = 0, z = 0.5, z = 1 and z = 1.5 redshifts. Obviously we have
studied z = 0 to compare our data with nearby elliptical galaxy observations. We built
our higher redshift samples to study the evolution of this type of galaxies. Our choice
for higher redshift values is also related with the available observations for ellipticals.
ELOs have been identified as those galaxy-like objects having a prominent, dynamically
relaxed spheroidal component made out of stars, with no extended discs and very low
gas content. For this purpose we combined several techniques.

A visual approach allow us to eliminate galaxy-objects suffering major mergers or
with prominent disks. Some examples of this approach can be seen in (4.5) (4.6) and
(4.7). At the same time we used a combination of statistical and numerical techniques.
We built for each GLO a mass versus radius profile for all mass components: hot gas,
cold gas, stars, baryons, dark matter and total. Masses were obtained by calculating the
mass contained in spheres of increasing radius. First one can address for the presence
of large amounts of gas. Also we can look for satellites and any presence of an on-
going merger. In this sense we put the limit for major merger definition when the
quotient between baryon masses of the satellite and the main object was greater than
0.25 (Gottlober et al., 2001; Solanes et al., 2005). Related with interacting signals, we

have looked for:

e The presence of tidal tails, loops, and shells, which are induced by strong gravi-

tational interaction.

e A single nucleus, which, based on numerical studies, marks the completion of
the merger. This criterion is important because it marks the point at which the

merger should begin to exhibit properties in common with elliptical galaxies.

e The absence of nearby companions that may induce the presence of tidal tails and

make the object appear to be in a more advanced stage of merging.
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Figure 4.5: Three orthogonal projection of the stellar and gas components of an Elliptical-like object.
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Figure 4.7: Three orthogonal projection of the stellar and gas components of an irregular object.
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4.4.1 The halo and stellar scales of an ELO

Following the identification of an ELO, to characterize its structural and dynamical
properties, two scales have been defined on it: the halo scale, and the stellar scale. Note
that along this work we have used superscripts to mean the different ELO constituents
(total, dark, stars, etc), and subscripts to distinguish between halo (h) or baryonic
object (bo) scales.

The wvirial halo scale This scale describes the ELO size at the scale of its dark
matter halo. It is usually defined in terms of a characteristic overdensity, A.. The
value of A, is taken from the solution of a spherical top-hat perturbation under the
assumption that it has just virialized and the model of spherical collapse (Padmanabhan,
1993; Peebles, 1980). The exact calculation of its value is not trivial because it has a
dependence on cosmology. In this work we have used the solution from Bryan & Norman
(1998) for a flat universe:

Ac(z) = 1872 + 82x(2) — 392(2)? (4.1)
where, ,
Q1+ 2) B
) =g Uiy L (42)

We define the virial radius, rvi;, as the radius of a spherical volume within which the
mean density is A, times the critical density at that redshift. The total mass inside ry;;
is the virial mass My;,. Therefore we obtain very solid characteristic length and mass
parameters at the halo scale.

We will say that the halo scale is well defined for the simulated elliptical as long as
the total and dark matter halo profiles do not have several irregularities due to on-going
mergers up to ryiy or satellite infall. In Figure 4.8 several clear examples of well and ill
defined ELOs are shown.

The stellar or galaxy scale This scale is defined by the stellar mass of the ELO,
M which was calculated using spherical mass profiles. We calculate the stellar mass
inside spheres of different radius, from zero to at least ry;,. For each sphere we sum
all stellar masses inside it. In these profiles we see a very characteristic pattern, a fast
grow from lower to higher radius up to a point where the curve seems to flatten out
(see Figures 4.9). We define the radius of the baryonic object, 7, as the distance from
the center of the object to some point of this flat part of the curve. The mass inside
the sphere of radius rp, is M. We will say that this scale is well defined as long
as the ELO is not suffering a major merger. This is, the stellar mass profile flattens
out before we found any other GLO that satisfies the major merger criterion defined
upwards. We also need that we can define the characteristic radius without including

any possible satellite that will affect the analysis. Finally we define a more solid length

star

scale estimator, the effective stellar radius, 7515,

as the radius enclosing half of the stellar
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mass, M. This scale estimator is used to make a final filter in the ELO samples. To
avoid the lack of resolution in the internal properties of ELO samples, we selected just

objects that have a 5% equal or greater than the resolution of the simulation. We have

also defined a more solid total length scale estimator 7"3%)&,11;0 characterized as those radii
enclosing 90% of the M mass.

The masses used to compare different group finding algorithms in Section, 4.3, called
M an, was calculated following this method for each object but taking into account all
the baryonic particles (filtered by the gas temperature and density threshold if neces-
sary).

From the analysis of these two scales we have build all ELO samples at different
redshift that will be studied in the following chapters. We have decided to build two
different samples types. The stellar ELO sample type (also defined as -STAR sample),
include all ELOs that are well defined at the stellar scale. ELOs in these samples can
be embedded in a dark matter halo that it is not relaxed, making the halo properties
ill-defined. This happens because the halo is suffering a merger at this scale. In these
cases there can be some other significant stellar objects around the main ELO below
the virial radius. The stellar & halo ELO sample type, include all ELOs that are well
defined at the stellar and at the halo scale. This subsample will be important in order to
study the link between halo and stellar fundamental parameters. The final total number
of ELOs found in each simulation sample is given in Table 4.3. Note that due to their
respective SF implementations, galaxy-like objects formed in EA type simulations tend
to be of earlier type than their counterparts formed in EB type simulations. Moreover,
gas has had more time to lose energy along EFB type ELO assembly than in their EA
type counterparts, and, consequently, the former have smaller sizes than the latter (see

discussion in Section 6.2).
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. . Number of ELOs
Simulations Scale D=0 2—05 r—1 2—15
EA-STAR Stellar 56 56 57 56
EA Stellar & Halo 26 19 21 16
EB-STAR Stellar 26 25 23 24
EB Stellar & Halo 17 14 16 16
EC Stellar & Halo 6 7 7 5
ED (7705) Stellar 7 - - -
ED (6705) Stellar 7 - - -
ED (7714) Stellar&Halo 4 = - -
EF1-STAR (8935) Stellar 31 25 22 13
EF1 (8935) Stellar & Halo 21 - - -
EF2-STAR (8914) Stellar 38 26 18 20
EF3-STAR (2100) Stellar 22 - 14 -
EF3 (2100) Stellar & Halo 11 - 8 -

Table 4.3: The number of ELOs found in the simulations for the different redshifts
analyzed. For each sample, we indicate the number of ELOs well defined at the stellar

scale (-STAR) and the number of these objects that are also well defined at the halo
scale.
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Figure 4.8: Four examples of total mass profiles. Arrows stand for the r; obtained by
the Bryan & Norman (1998) algorithm (see text for details). In the top, two examples
of well defined ELOs at the halo scale. Bottom Figures show two examples of ELOs
that are not well defined at the halo scale. They are not isolated, making the virial
parameters ill defined.
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Figure 4.9: Four examples of stellar mass profiles. Arrows stand for the r, obtained
for each ELO as long as it is well defined at the stellar scale. In the top, two examples
well defined ELOs at the stellar scale. Bottom Figures show two examples of ELOs that
are ill-defined at this scale because of merger events.
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4.5 Calculating global properties

We have defined already the two scales that characterize all the global properties of
the elliptical-like objects of our simulations. In order to make the following chapters of
results easier to read and to stress their main findings, this Section describes in detail
the different tools developed to obtain the structural and kinematical information of

each simulated elliptical at its different main scales.

4.5.1 The halo scale properties

In the case of the total mass structure of galaxies, last results from lensing (Koopmans
et al., 2006) have found that the internal part of total matter density profiles can be
described by a power law expression p*°t(r) oc 777, Following these results, we have built
the total matter density profiles of our elliptical-like objects and fit them to a power
law expression using the least squares fitting technique. We have done this fits up to
the virial radius, ri; and other lower characteristic radius that will be discussed in the
following chapters. In general, we have developed tools to calculate the matter density
profiles by fixing the bin length (lineal or logarithmic) or by imposing a number of
particles in each bin. In the case of this analysis, we found the binning by a logarithmic
scale the most appropriate because of its low noise at the inner and outer parts of the
object.

Concerning the dark matter, spherically averaged dark matter density profiles of re-
laxed halos formed in N-body simulations have been found to be well fitted by analytical
expressions such that, once rescaled, give essentially a unique mass density profile i.e.,
a two parameter family. These two parameters are usually taken to be the total mass,
M, and the concentration, ¢ or the energy content, F£. These two parameters are,
on their turn, correlated (i.e., the mass-concentration relation, see, for example Bullock
et al., 2001; Wechsler et al., 2002; Manrique et al., 2003) because the assembly process
implies a given correlation between M,;, and E. Different authors propound slightly
different fitting formulae, see Einasto (1969, Eina) or Navarro et al. (2004b), Hernquist
(1990, Hern), Navarro et al. (1996, NFW), Tissera & Dominguez-Tenreiro (1998, TD),
Moore et al. (1999b) and Jing & Suto (2000, JS), that can be written as:

3 ~
dark aver c p(r/ah)
r) = X —— 4.3
aver

where pR'®" is the average density within the virial radii, ay, is a characteristic radius

and ¢ = ryi/ay, is the so-called concentration parameter. Using y = r/ay,

ply) =y *(L+y) 7, (4.4)

where (o, 8) = (1, 3) for Hern; («, 8) = (1, 2) for NEFW; (o, 5) = (2, 2) for TD, and
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B = 3—a, with « left free, for the general formula found by Jing & Suto (2000) (note that
NFW can be considered as JS with & = 1). In these fitting formulae « is the inner slope
(r << ap), the outer slope (r >> ay,) is a+p (3 for JS or NFW), so that ay, characterizes
the scale where the slope changes. Other interesting scale is r_s, the r value where the
logarithmic slope, dInp/dInr = —2. We have r_y = a,(2 — o) /(a + f — 2) for a profile
given by Eq. 4.4, with r_s = a,(2 — «) for JS and r_s = aj, for NFW. Navarro et al.
(2004b) propound a different fitting formula of the form:

py) = exp(—2uy'/"). (4.5)

where dlnp/dInr = —2(r/ay)/* and r_y = ay. Note that this last fitting formula
is similar to the Sérsic formula (Eq. 3.1), as Merritt et al. (2005) first pointed out. It
was first used by Einasto (1969), see also Einasto & Haud (1989), so that we will refer
to it as the Einasto model (Eina), in consistency with the terminology used by other
authors (Merritt et al., 2006).

One great advantage of using the formulation stated in Equation (4.3) for the density

profile is that the mass profile function can be easily obtained as

dark _ M dark
MU () = O M (4.6)

and for each proposed formulae the g functions can be written as:

y2

o) = 5 gyz (Hern) (4.7)
oly) =In(y +1) = -5 (NFW) (4.8)

o) = 12 (TD) (4.9)

9(y) = (3= )P 23— a3 — a4 — a,—y) (JS) (4.10)
9(v) = 5 (20)" (3, 20y*) (Eina) (4.11)

where 9F(a,b,c,d) is the hypergeometric function and 7(a,b) is the lower incomplete
gamma function.

We have used the integrated dark matter density profiles as fitting formulae instead of
the dark matter density profiles themselves because these latter are binning dependent,
more noisy and with fewer points to fit. The optimal fit has been obtained by minimizing
the statistics:

x? = 2N [log M (r;) — log M4 (r)]2 /N (4.12)
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where M7 (r;) is the ELO dark matter mass within a sphere of radius r; centred at its
center of mass, M (r;) is the integrated mass density profile corresponding to the different
formulae above, and the virial radii r;; have been taken as outer boundaries of the fitting
range. The minimum radius for the fit was set at the resolution of the simulation. The
reason of selecting a log — log statistics is mainly because of the difficulty of calculating
proper errors of any quantity from the simulations. Without this normalization, in the
classical form of the x? statistics, the higher values of the outer part of the profiles take to
much statistical weight. However, as we have seen before, the main differences between
the different authors$ formulae are in the inner parts of the dark matter. Therefore
to improve the fits in the inner part of the mass profiles we have selected a log — log
statistics. An updated version of the MINUIT software from the CERN library has

been used to make these fits as well as any other in this thesis.

The Vg (r) profiles provide another measure of the mass distribution. We have
to take into account that the gravity interaction in the simulations is modified by a

softening term (see discussion in Chapter 2). Therefore we calculate these profiles using

R e (4.13)

where G is the gravitational constant, M (r) is the mass profile and e is the softening

the following equation:

used in the simulation. The formal definition of circular velocity is recovered when

€ — 0. Some examples of these profiles can be seen in Section 5.2.

At the halo scale we also calculate Ug’oﬁ, as the velocity dispersion at halo scale.

For this calculation all particles (baryonic and dark matter) inside a sphere of radius
rvir were used. To eliminate some possible under resolution effects, particles placed at
a distance lower than the resolution of the simulation from the center were excluded.
This was made in every velocity dispersion calculation made in this work, at all scales.
Velocity dispersion is calculated in the following way, as we know velocity dispersion is

2

given by the following equation o2 = v2 — 32, Situate ELO variables in the center of

mass system coordinates makes 92 = 0 so

_ 2 Wi mUF (4.14)

This brings us also the possibility to test our center of mass finding algorithm as we
can check if 92 = 0 for the number of particles we have select. This deviation effect
makes corrections of less than 1% in the o2 calculations. Some examples can be seen in
Section 5.3.
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4.5.2 The stellar scale properties

To quantify the stellar three-dimensional mass density profiles of ELOs, we will fit
them to the JS and Einasto analytical formulae (see Equations 4.4, 4.3, 4.11 and 4.10)
through the statistics defined in Eq. 4.12 where M™% (< r;) has been replaced by the
ELO stellar mass within a sphere of radius r;, M®% (< r;). As the maximum radius of
these fits we have selected the radius of the baryonic object, 7,4, and a more solid total
length scale estimator, Tssato?{)oa characterized as those radii enclosing 90% of the Mgter
mass. The minimum radius for the fit, as in the dark matter mass profiles fit, was set
at the resolution of the simulation.

Another historical approximation to the study of the structure of the stellar objects
is by assuming that it can be characterized by an ellipsoid with principal axes a > b > c.
There are a few different ways found in the literature to model mass systems as ellipsoids.
They all differ in details, but most methods model them using the eigenvectors from
some form of the inertia tensor (Allgood et al., 2006, see, ). We have computed these

values from the eigenvalues (A1 > Ay > A3) of the inertia tensor of the particles inside a
N

specific maximum radius rmaz, Lij (< Tmaz) = ka(rzéij + z;x;) following Gonzélez-
k=1

Garcia & van Albada (2005). For an ellipsoid of uniform density,

a:\/S(/\g—/\1+>\3) b:\/5(A3—A2+A1) C:\/5(A1_A3+”\2) (4.15)

2Mstar 2Mstar 2Mstar

I'max T'max Tmax

To check how the 3D shape parameters, a, b and ¢, depend on the maximum radius

used we compute it, for each baryonic object, at the effective stellar radius, rgtgg, at the

90% stellar mass radius, 7"3%*?{)0 and at the radius of the baryonic object, 7.

Concerning kinematics at the stellar scale, we calculate velocity dispersion inside

Tho, agfﬁf), in a very similar way as the velocity dispersion in the halo scale but just

using stellar particles. As long as 7, is well defined (see above), changes of even a
10% in the radio produce changes lower than 1% in M and agfﬁg. Another relevant
quantity is the anisotropy of the 3D velocity distributions of the ELO sample, defined

as:

2
Oy

Bani: 17270_12)

(4.16)

where o, and o are the radial and tangential velocity dispersions (02 = ag—l—ai), relative

to the center of the object. Some examples of these profiles can be seen in Section 5.2.

Concerning the organized motion of the elliptical-like objects, we have developed
several tools to measure the possible rotation of these objects. We compute the total
angular momentum, L=7x p using all the star particles that satisfies 4 > 7 > Tinin,
where 7,,;, was set at the resolution of the simulation and as 7,4, we utilized the char-

. . .o t t . . . .
acteristic radii, 7310, 790ho and Tho, in a similar way as the 3D shape study described
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above. However, once we knew the angular momentum, we have built another set of tools
that also measure the amount of rotation of our elliptical-like objects in order to make
better comparisons with observational data. From our calculation of L= (Lg, Ly, L),
we determine the main axis of rotation of the simulated ellipticals. In spherical coordi-
nates, the direction of this axis are set by § = L,/|L|, ¢ = arctan(Ly/L,), where 6 is
referred to as the zenith, colatitude or polar angle, while ¢ is referred to as the azimuth.
We have rotated the whole system to make this axis the z-axis. This rotation can be

done in several ways, in this work we have used the following matrix:

1+ (cos() — 1) -cos(¢)?  (cos(f) — 1) -sin(¢) - cos(¢) —sin(f) - cos(¢)
R=| (cos(d) —1)-sin(p)-cos(¢) 1+ (cos(d) —1)-sin(¢)?>  —sin(d) - sin(¢)
sin(#) - cos(¢) sin(#) - sin(¢) cos(f)
(4.17)
which has been built to make R = 1 whenever 6 = 0.
Once we have set the z-axis as the axis of rotation, we have calculated the mean
tangential velocity, Vg, at the different characteristic radii that we have for our elliptical-

like objects: rfff;‘é, 7“3%5"{)0 and 7pe.

4.5.3 The observational stellar scale properties

In addition, at the stellar scale we measured a observational scale. To compare with
observations we have to try to mimic as much as possible the data that is obtained

through telescopes. This is, we have to take into account projection and concentration

star

effects. Projected stellar mass, M5 and projected stellar half-mass radii?, Re,bo,

cyl,bo
are calculated again by building a ymass profile. We first select the particles of the
simulation for the study using a sphere of radius rp, (i.e.; a limiting radius for each
object). Nevertheless this time we want a projected mass profile. For this, instead
of using spheres as in previous cases, we have to choose a direction of projection and
place cylinders of increasing radii along it. We sum all stellar mass particles inside each
cylinder to obtain the projected mass profile, Mcy(R). The observationally relevant
size scales are the projected half-mass radii. They are determined from Mcy(R), the
integrated projected mass density in concentric cylinders of radius R for the different

constituents. For example, Rgbbo and thf;g are the projected radii where M CC;)I(R) and

MCS;?T(R) are equal to M§57b0/2 and to Mﬁ;i%o/Q, respectively. Note that, as r,, is used
to cut a sphere that afterwards is being projected, we have that M CS;“,?I{DO S Mggar.

Before going any further on observational scale parameters, it is important to clarify
an important point. The first step in calculating the observational parameters described
here is the definition of a line-of-sight axis. To account for the possible projection

effects we have generated one hundred random projections. We have calculated all

4Hereafter we will use capital R to mean projected radii
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the observational scale parameters for these one hundred random projections for each
object to really include all the range of possible observational data. The random line of
sight axes have been set by the generation of random pairs of the spherical coordinates
(0,0). The system is rotated to make the axis defined by these coordinates the z-
axis using the rotation matrix described above (see Equation 4.17). For purposes of
clarity, we reserve the formal definition terms used in this Section for the
observational parameters (as Mcs}t,ﬁ)o, szﬁf), etc.) for the averages values over
these one hundred random projections. Anyway, in the following chapters of this
thesis we will remind this definition if necessary and indicate properly any other uses.
The next step is the description of the projected mass density profiles. Authors now
agree that the Sérsic law given in Eq. 3.1 (Sérsic, 1968) is an adequate empirical repre-
sentation of the optical surface brightness profiles of most ellipticals (see, for example,
Caon et al., 1993; Bertin et al., 2002). Assuming that the stellar mass-to-light ratio
St does not appreciably change with ELO projected radius R, the projected stellar
mass profile, 35 (R) can be taken as a measure of the surface brightness profile and

be written as

Zstar(R) _ ,ystar]'light(R). (418)

One can then expect that YX5%T(R) can be fitted by a Sérsic-like law. Following

Equation (3.1), the Sérsic law for the projected stellar mass profile can be written as
SH(R) = ST exp|— (R/ RS /") (419)

where RS™' is the Sérsic scale parameter, n the Sérsic shape parameter and Z5 is
projected central stellar mass density. But this equation can be rewritten in terms of
more familiar factors, as the projected stellar half-mass radius, thgg, and the projected

stellar mass density within this radius, X5
S (R) = S5 expl b ((R/RE)" — 1) (4.20)

where we have introduced the term b,, defined as RS™ = RS%I(p,)" and L5 =
Y84 oxplby] and that can be obtained by b, = 2n — 1/3 4 0.009876/n (Prugniel &
Simien, 1997). We have calculate the Y% (R) profiles by averaging on concentric rings
centered at the projection of the center-of-mass of the corresponding ELO. Obviously
we are interested in how the projected structure of our elliptical-like objects adjust to
the Sérsic profile so we have developed all the necessary tools to do it. The fitting set of
parameters depend on the methodology used to obtain them (see interesting discussions
in Lima Neto et al. 1999 and Aceves et al. 2006). Therefore some remarks on how our
fits have been made are in order. Since the projected densities are binning dependent

and somewhat noisy, the integrated projected mass density in concentric cylinders of



76 Chapter 4. Analysis of the Simulations

radius R and mass M35 (R) = 27 fOR ystar (R R'd R’ has been used as a fitting function,
instead of X5 (R) itself. Finally, using the formulation of Equation (4.20) for the Sérsic

law we can obtain the following equation for the projected mass profiles:

P[2n,by(R/Rg™)/"]
2n, bn(Rmax/RZtar)l/n]

cyl cyl (421)

Mstar(R) — Star(Rmax)
P
where Pla, x| is the regularized gamma function. In this case we have used the statistics
defined as
X2 = SN [Mey(Ri) — M (Ry)J? /N (4.22)

cyl

since we want to directly compare with observational results. However we have also
studied the effects of using the statistics stated in Eq. (4.12).

Concerning the fitting range, we have adopted an outer boundary Ry« such that
the corresponding surface brightness '8M(Ry,.x) (see Eq. 4.18) gives the standard value
of 15(Rmax) = 27 mag arcsec™2 which is a typical limit of resolution in the Johnson B
Band for nowadays telescopes (D’Onofrio, 2001). To obtain 18" in Lopc=2 we have
used that log Igght (Rmax) = —0.4[up(Rmax)—kp] taking kg = 27 for nearby observations
in the Johnson B band (Jorgensen et al., 1996). Using these parameters we obtain a
surface brightness limit of Igght(RmaX) ~ 1L@pc*2. Moreover, the values for the stellar

mass-to-blue-light 5% span a range from 75" = 2 to 12, depending on the details of its

determination (see discussion in Mamon & Lokas, 2005a), and best values of v5*" = 5

to 8. Their geometric mean v = 6.3 and the lower and higher best values have been
used to make the fits. These limits translate into X5 = 6.32 x 10'2Mg /Mpc? for the

best value and 5x 1012 Mg, /Mpc? and 8 x 1012 M, /Mpc? for lower and upper v52" limits.
We will call the outer boundary obtained from this method, Ro7.

Just as in the 3D case of the stellar object, we have used another classic tool to
study the shape of the projected simulated galaxy and compare it with observations.
We have calculated the apparent ellipticity, € of the projected mass profiles. Concerning
the point of view, we have calculated e for one hundred random projections and also
for a point of view chosen to be perpendicular to the spin angular momentum vector
of the stellar matter because we are interested in studying the shape versus rotation
relation (see Section 3.2). This particular point of view should maximize the effects of
rotation where this is present (see Binney, 2005; Burkert & Naab, 2005). We project
the particle distribution along the line of sight to derive the ellipticity for each point
of view. Following the same approach used to obtain the 3D shape parameters, we
compute € from the eigenvalues (A\; > Ag) of the projected inertia tensor of the particles
inside a specific maximum radius, where e = 1 — \y/A;. We will also analyze the effects
of selecting different maximum radius for computing e as R{fr or Rgit,-

We have measured the stellar line-of-sight velocity and the stellar velocity dispersion

profiles, V%' (R) and of'*"(R), along one hundred random projections for all ELOs in
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the sample. We have taken into account only star particles as this quantity is measured
through stellar spectra or other observables, as the planetary nebulae, linked with stars
(observational profiles can be found, for example in Douglas et al., 2007). Some examples

for our ELOs can be seen in Section 5.2.

Obtaining an equivalent to the observational central l.o.s velocity dispersion, Ufgsa’ro,

is not straightforward. Again, the direction of projection has been selected and the
particles are binned using cylinders of increasing radii. We compute it by calculating
the accumulated velocity dispersion just using the velocity component along the line
of sight. To improve the drawback of resolution, the maximum of all these values
for different radii up to stellar effective radii, is chosen as the line-of-sight velocity
dispersion, Ulsggro. To eliminate some possible under resolution effects, particles placed
at a distance lower than the resolution of the simulation from the center were excluded.

To mimic other observational techniques used in stellar kinematics of elliptical galax-
ies, we have measured these profiles placing a slit along the major and minor axes of
projected ELOs, where the major axis is defined as that orthogonal to the ELO spin
vector projected on the plane normal to the LOS, and the minor axis is parallel to the
spin projection onto the plane of the sky (see Figure 4.10). Only those particles below

o and above the resolution of the simulation are selected. In this way we obtain the

star

star(R) and 63" (R) obtained in observations (see for example Hau & Forbes,

classical f/l

2006). Some examples can be seen in Section 5.3.

L
‘ Major axis
o

Minor axis

Figure 4.10: Slit position to mimic observational observations and compute stellar kine-
matic profiles.

Finally, we are interested in the maximum of the velocity curve, Viax, of these
line-of-sight velocity profiles. This quantity has been largely used as an observational
indicator of the amount of rotation in ellipticals (see discussion in Section 3.2). As with
the projected ellipticity, we have used a point of view chosen to be perpendicular to
the spin angular momentum vector of the stellar matter which maximizes the effects
of rotation where this is present (see above). We have placed a slit along the major
axis of the projected system and we have obtained the projected velocity and velocity

dispersions curves. The value of Vj,ax is obtained from the mean value of the maximum
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star

e.bo and

velocity (positive) and the minimum velocity (negative) of the profile inside R

star
R9O,bo .

4.6 Summary

This chapter describes a set of samples of virtual ellipticals, formed in different cosmo-
logical simulations roughly consistent with observations. The normalization parameter
has been taken slightly high, og = 1.18, as compared with the average fluctuations of
2dFGRS or SDSS galaxies to mimic an active region of the Universe. Newton laws and
hydrodynamical equations have been integrated in this context, with a standard cooling
algorithm and a star formation parameterization through a Kennicutt-Schmidt-like law,
containing our ignorance about its details at sub-kpc scales. No further hypotheses to
model the assembly processes have been made. Individual galaxy-like objects naturally
appear as an output of the simulations, so that the physical processes underlying mass
assembly can be studied. Five out of the total simulations (the EA type simulations)
share the SF parameters and differ in the seed used to build up the initial conditions.
To test the role of SF parameterization, the same initial conditions have been run with
different SF parameters making SF more difficult, contributing another set of five sim-
ulations (the EB type simulations). We have also run different simulations in order to
test the effect in our results of different parameters as the cosmological model (EC),
resolution (ED) and box size (EF).

We have seen that the search for GLOs in hydrodynamical simulations and the study
of their properties is not a trivial issue. The group finding algorithms give different
results depending on the parameters used. In this context we have obtained from our
analysis some results that will help in order to minimize these effects and to obtain more
robust identifications. However we have decided to go for an object-by-object study of
the most massive GLOs of the simulations in order to build our elliptical-like object
samples. Although this is a really more tedious work, it guarantees the robustness of
our samples.

During this object-by-object analysis we have studied the halo and stellar scale
of GLOs and selected those satisfying the ELO identification criteria. In all these
simulation ELOs have been identified as those galaxy-like objects having a prominent,
dynamically relaxed spheroidal component made out of stars, with no extended discs
and very low gas content. This stellar component is embedded in a dark matter halo
that contributes an important fraction of the mass at distances from the ELO center
larger than ~ 10 — 15 kpc. ELOs have also an extended halo of hot, diffuse gas. We
have described all the analysis done in order to get robust ELO samples. Then, at the
end of this phase, we have obtained several ELOs in our different simulation samples

that are well defined by a characteristic radius at each scale, the virial radius, 7, and
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the baryonic object radius, r,,. These two radius define two characteristic masses, the
virial mass, My, and the stellar mass of the object, Mgf)ar. Finally we have developed
a set of tools in order to study the structure and kinematics of these objects at the
different scales and to compare them with observational data.

To help the reader, in Table 4.4 and Table 4.5 we give a list of the parameter names

and symbols introduced in this chapter to be used in the following ones.
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Name Symbol ‘

Halo scale parameters

Virial mass Myir
Virial radius Tvir
Dark mass inside virial radius Mﬁlark
Baryon mass inside virial radius ijaf
Cold baryon mass inside virial radius Mﬁb
Stellar mass inside virial radius Mtar
Total half-mass radius rgoﬁ
Cold baryon half-mass radius r‘cflil
Stellar half-mass radius rf:ﬁr
Einasto shape parameter W
Total 3D velocity dispersion a5
Baryonic-object scale parameters

Baryonic object radius Tho
Stellar mass Mtar
Cold baryon mass Mﬁ'g
Stellar half-mass radius o
Stellar 90%-mass radius T80 b0
Cold baryon half-mass radius rg}%o
3D ellipticity €3D
Mean stellar 3D velocity dispersion o5y
tangential stellar velocity Ve
Observational baryonic-object scale parameters
Projected stellar half-mass radius R;tﬁf)
Projected stellar mass MZH,
Mean projected stellar mass density within thﬁg ystar
Projected 27 mag x arcsec™2 radius Rgtar
Sérsic shape parameter n
Stellar projected ellipticity €
Central LOS stellar velocity dispersion of‘g;ro
Maximum of the velocity curve Vinax

Table 4.4: Parameter names and symbols. See text for details.
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Profiles
Name Symbol®
Mass profile M (r)
Circular velocity profile Veir (1)
3D velocity dispersion profile osp(r)
Anisotropy profile Bani(T)
Projected mass density profile Y(R)
Line-of-sight velocity profile Vios(R)
Line-of-sight velocity dispersion profile o10s(R)

Ratios
Ratio definition Ratio symbol
G e[ OSDPTE cf

i e Cu

pai RS
ok )
(o358)°/3lofiar
G Myir /3(058 ro) R?}?E = CFGdGrpCvdCvpe Af

Table 4.5: Profile and ratio names and symbols.

(a) To specify the constituent, a superindex has been added in the text to the profile
symbols: dark for dark matter, bar for baryonic matter, hb just for hot baryons, cb for
cold baryons and star for stars. For example M5 (r) for the stellar mass profile.
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Chapter 5

Ellipticals at z = 0: Profiles !

5.1 Introduction

In what follows, we present our work on the structural and kinematical description of
our simulated nearby ellipticals (z = 0). The information about position and veloc-
ity distributions of the ELO particles of different kinds (dark matter, stars, cold gas,
hot gas) provided by the simulations, allows a detailed study of the parameters char-
acterizing their structure and dynamics. This Chapter is focused on the structural
and kinematical profiles of the different components, dark matter, star and gas, of the
z = 0 samples. Next Chapter would focus on the study of the different relations of the
fundamental parameters that characterize these profiles.

All this study has been done for the different simulations discussed in 4.2. However
for the sake of clarity, in this and in the following chapter we would center our analysis
on the FA-7Z0 and EB-Z0 ELO main samples. We would discuss deeply robustness of
results and possible caveats between all the samples at the end of the next chapter 6.5.

The organization of this chapter is as follows: Next section 5.2 is focused on the
3D and 2D structural profiles and we would try to address the important issue of the
amount and distribution of dark, stellar and total matter in virtual ellipticals. In section
(5.3) we would focus on the kinematical profiles trying to deepen into the kinematics
of the dark matter component and its relationship with the kinematics of the bright

matter component. Finally in Section (5.4) we present our conclusions.

5.2 Structure Profiles

A quantitative description of ELO mass distributions is given by their 3D density profile
and the structure their constituent particles. We first address the structure of the

baryonic particles. To help the reader, we remind that in Table 4.4 and Table 4.5 a list

'Based on Oforbe, Dominguez-Tenreiro, Artal, & Serna (2006); Ofiorbe, Dominguez-Tenreiro, Sdiz,
& Serna (2007)
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of the parameter names and symbols used in this thesis can be found.

5.2.1 Three Dimensional Structure for Gas Particles

The gas structure is drawn in Figure 5.1 for the second more massive object formed in
a EB-70 type simulation. The 3D density at a given distance, r, from the center of the
object has been calculated by binning on concentric spherical shells around r. In this
Figure, the line is the density profile of dark matter around the object, multiplied by
O /. Points represent gas density at the positions of SPH particles, and colors stand

for gas particle temperatures according with the scale at the bottom of the Figure.
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Figure 5.1: 3D gas (points) and dark matter (blue line) density for a typical ELO. Note
the dense cold gas clumps embedded in the diffuse hot gas component. See text for an
explanation. This figure is courtesy of A. Séiz.

We see in this Figure that very few gas is left at positions with » < 30 kpc where stars
dominate the mass density, that cold gas at » > 30 kpc is dense and clumpy, while hot
gas (that is, gaseous particles with T > 3 x 10*K) is diffuse with an almost isothermal
component at 100 kpc < r < 400 kpc, and a warm component at the outskirts of the
configuration, reaching outside the virial radius (395.0 kpc). Two scales stand out in
this configuration: the ELO scale or stellar component, with a size in this case of ~ 30

kpc, and the halo scale, a halo of dark matter of 395.0 kpc. Cold dense gas particles
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are associated in most cases with small dark matter halos (not seen in the Figure);
both gaseous particles in cold clumps and dark matter particles in their (sub)halos
are shocked particles, using the terminology of the adhesion model (see, for example,
Vergassola et al., 1994). The configuration illustrated by this Figure is generic for ELOs:
we can distinguish an ELO or baryonic object scale, with typical sizes of no more than
~ 10 - 40 kpc, and the halo scale, a halo of dark matter typically ten times larger in

size.
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Figure 5.2: Upper panel: the cosine of the angle formed by the position and the velocity
vectors for each gaseous (green circles) and stellar (starred red symbols) particle belong-
ing to a typical ELO. Filled (open) symbols stand for particles in (counter) co-rotation
with the small inner disc. This figure is courtesy of A. Siiz.

5.2.2 Stellar and Gaseous Particle Orbits

ELO constituent particles of different kinds travel on orbits that have different charac-
teristics. To analyze this point, in the upper panel of Figure 5.2 we plot, for each star
particle and each gaseous particle of a typical ELO, the cosine of the angle formed by
its position (7;) and its velocity (v;) as a function of r;. Positions and velocities have
been taken with respect to the center of mass of the main baryonic object. In this plot
radial orbits have cosines = +1, while circular orbits have cosines = 0. Starred (circular)

symbols stand for stellar (gaseous) particles. We see that cold gas particles at r < 4
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kpc form a disc in coherent circular motion; filled (open) symbols represent particles
in co-rotation (counterrotation) with respect to this small disc. We can also see that
stellar particle orbits at < 3 kpc scales do not show any preference, while those further
away, as well as gaseous particles outside the disc, show a slight tendency to be on
radial orbits providing anisotropy to the velocity dispersion. Stellar particles constitute
a disordered or dynamically hot component, showing an important velocity dispersion,
and, also, in some cases, a coherent net rotation. In 5.3 these issues will be addressed

in detail.

5.2.3 Dark Matter Profiles

All our virtual ellipticals are embedded in a well defined dark matter halo up to the
virial radius. As we have seen in Section 3.2, pure N-Body simulations had played a very
important role in the study of the properties of these halos, and different authors had
propound different analytical fitting formulas such that, once rescaled give essentially
a unique mass density profile. However, when processes other than gravitational are
involved in mass assembly (for example, cooling or heating), the dark matter density
profiles could be modified (see Blumenthal et al., 1986; Dalcanton et al., 1997; Tissera &
Dominguez-Tenreiro, 1998; Gnedin et al., 2004). To analyze this point, in Figure 5.3 we
plot the dark matter density profiles for several typical ELOs, along with their best fit
to different analytical profiles: Einasto (1969, Eina) or Navarro et al. (2004b), Hernquist
(1990, Hern), Navarro et al. (1996, NFW), Tissera & Dominguez-Tenreiro (1998, TD),
Moore et al. (1999b) and Jing & Suto (2000, JS). All the details of the fitting procedure
and the exact parameterization of these profiles can be found in 4.5. As a test to check
the consistency of the fits, we have compared the virial effective radius, rg’ﬁ, and the
virial mass, My, obtained from the different fits versus the ones obtained directly from
the profiles and find very similar results.

Note in Figure 5.3 that the quality of the fits differs from one analytical profile to
another. To quantify this effect, in Figure 5.4 we plot the distributions of the x? per
d.o.f. statistics, normalized to (log M,i;)?, resulting from the fits to the different profiles
above. We see that the lower x? per d.o.f. values generally correspond to either the
Fina or the JS profiles, with the TD profiles in the third position and NFW profiles
in fourth. In Figure 5.5 we draw the values of the p (for Eina profiles) and « (for JS
profiles) slopes corresponding to the optimal fits of EA-Z0 sample DM halos. A slight
mass effect can be appreciated with lower mass ELOs having steeper DM halos than
more massive ones, presumably due to a more important pulling in of baryons onto
dark matter as they fall to the ELO center with decreasing ELLO mass. That is, massive
halos are less concentrated than lighter ones, i.e., the mass-concentration relation. In
any case, the profiles are always steeper than o =1 (i.e., the NFW profile; see Mamon
& Lokas, 2005a; Stoehr, 2006).
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Figure 5.3: Dark matter density profiles (black full line) for several typical ELOs from
EA-70 and EB-Z70 samples along with their best fits to different analytical profiles:
NFW (red point line), TD (blue long-dashed line), JS (green short-dashed line) and
Eina (magenta point-dashed line).

To further analyze this effect, we plot in Figure 5.6 the p_o density parameter versus
the r_s scale obtained from fits to the Einasto model. Green triangles are measurements
by Navarro et al. (2004b) onto halos formed in N-body simulations and the green line is
their best fit. We see that at given r_o, p_o is higher in our hydrodynamical simulations
than in those of Navarro et al. (2004b), presumably due to the pulling in of dark matter
by baryon infall. We also see that at given M., r—_o is shorter in hydrodynamical
simulations than in purely gravitatory ones, by the same reason. It is worth to mention
that in the work of these authors, the virial radius and virial mass is defined by fixing
an overdensity of A. = 200, which is much greater than the one obtained from Bryan
& Norman (1998) algorithm (see details in Section 4.4.1) for FAand EBcosmologies

A, 106. This issue produces lower virial masses and radius. Virial masses of our ELO
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Figure 5.4: The distributions of the x? per d.o.f., normalized to the logarithm of their
respective mass square, for the fits of the DM density profiles of ELO halos (EFA-Z0 and
EB-70 samples) to different analytical profiles.

samples plotted in Figure 5.6 have been adjusted to this issue. In addition, our test fits
using a much shorter radius as the maximum limit of the fit, lead to very similar r_»

and p_o values and exactly the same conclusions.
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Figure 5.5: Left panel: the optimal inner slope « of the general Jing & Suto profile
for the DM halos of ELOs (green filled squares) and the p coefficient of the Einasto
analytical profile (magenta filled circles), versus their virial mass for EA-Z0 sample
ELOs. Right panel: zoom of the a versus virial mass plot to clarify the mass effect.
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Figure 5.6: The p_s density parameter versus the r_o scale obtained from fits to the
Einasto model, for ELOs in both the EA-Z0 sample (filled red circles) and the EB-Z0
sample (open blue circles). Green triangles are measurements by Navarro et al. (2004b),
onto halos formed in N-body simulations, with its fit by (Mamon & Lokas, 2005a) (green
line). Numbers correspond to the logarithms of the virial masses (in units of Mg) of
halos formed in different simulations, according with their respective colors.
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5.2.4 Baryonic Three-Dimensional Mass Density Profiles

We first analyze the baryon distribution at the ELO scale, where the main contribution
to the mass density comes from stars. We lack of any observational input on how the
three-dimensional stellar-mass density profiles p**a*(r) can be, except for a deprojection
of the Sérsic profiles (Prugniel & Simien, 1997; Lima Neto et al., 1999). In Figure 5.7 we
plot p***(r) for ELOs in the EA-Z0 sample. Different colors have been used for ELOs
in different mass intervals and a clear mass effect can be appreciated in this Figure,
and particularly so at the inner regions, where at fixed r/ryi; the stellar-mass density
of less massive ELOs can be a factor of two or so higher than that of more massive
ones. This means that the mass homology is broken in the three-dimensional stellar

mass distribution.
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Figure 5.7: Three-dimensional stellar mass density profiles for ELOs in the FA-Z0
sample: green dashed lines, ELOs with M,;, < 1.5 x 10'? M; orange point lines, ELOs
with 1.5 x 102 My < My, < 5 x 102 Mg; blue full lines: ELOs with M, > 5 x 1012
Mg. The stellar mass density profiles show homology breaking.

Following the method described in Section 4.5, we fit the stellar three-dimensional
mass density profiles of ELOs to JS and Einasto analytical formulas. The quality of the
fits is illustrated in Figure 5.8, and in Figure 5.9 the values of the x? p.d.o.f. statistics
are given, normalized to log M. Both Figures show that these profiles describe
adequately well the spherically-averaged stellar mass distribution in three dimensions,

even if with very small r_o values.

To study the possibility that the homology in the dark- versus bright-mass distribu-

tion is also broken, the stellar-to-dark density ratio profiles

J () = 99 () () (5.1)
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Figure 5.8: The stellar mass profiles for 4 typical ELOs in EA-Z0 sample (black contin-
uous lines) and their optimal fits to Einasto profiles (magenta point-dashed lines) and
JS profiles (green dashed lines).

are plot versus the radii normalized to virial radii (Figure 5.10). We see that there is a
clear mass effect at the inner regions, with the stellar mass distribution relative to the
dark mass one less concentrated with increasing ELO mass. For example, in Figure 5.10
we see that the fraction of the ELO virial volume where f5%2(r) > 1, is smaller as the
ELO mass grows; also, at fixed r/ryi, f5%(r) increases with decreasing ELO mass. So,
the homology is broken in the three-dimensional stellar-to-dark mass distribution, a fact
that could be important to explain the tilt of the observed FP (see Section 6.2.

To further analyze this point and make the comparison with observational results
easier, the dark-to-stellar mass ratio profiles, M %% (r) /M*t(r), are drawn in Figure 5.11

for the same ELOs, with the radii in units of the three dimensional stellar half-mass

star
e,bo"

effect, with a tendency of the dark matter fraction at fixed values of r/ rztgg to be higher

radii, r We see that there is, in any case, a positive gradient, and again a clear mass
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Figure 5.9: The x? statistics (Eq. 4.12) corresponding to the fits of the stellar mass
profiles for ELOs in the FA-Z0 sample Einasto profiles (magenta filled circles) and JS
profiles (green filled squares).

as the mass scale increases. To be more quantitative and compare with observational
data, we plot in Figure 5.12, left panel, the mean fraction of dark-to-total projected
masses at R/ thf)‘g =1 for ELOs in the FA-Z0 and EB-Z0 samples, versus their stellar
masses. We have computed this value for one hundred random projections. The error
bars in the plot represent the dispersion over all these values. The differences among
results for both samples come from the smaller thf;g values of FB-Z0 sample ELOs as
compared with their FA-Z0 counterparts (see discussion in Section 5.4). Green triangles
with error bars are results from integral field SAURON data and models by Cappellari
et al. (2006). We see that these empirical determinations of the dark matter fraction at
the center of ellipticals are consistent with the values found in ELOs of both samples,
including its growth with the mass scale.

In the right panel of Figure 5.12 we give the gradients of the ng*}rk(R) /M3 (R)

cyl
profiles V|1

Rstar Mdark Rout Mdark Rin
VIT = oute’bo in Cs}glar ( out ) - Cs};lar ( in) (52)
(R - R ) Mcyl (R ) Mcyl (R )

as a function of their stellar masses. Green triangles with error bars are the empirical
mass-to-light gradients as determined by Napolitano et al. (2005) for EGs with isophotal
shape a4 x 100 < 0.1, that is, boxy ellipticals. We have used as inner and outer radii
R/ thﬁf) = 0.5 and R°"/ Ritﬁf) = 4, roughly the average values of the inner and outer
radii these authors give in their Table 1.

We see that there is a mass effect and that our results are consistent with those found

by these authors in the range of stellar mass values our samples span, especially when
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Figure 5.10: The stellar-to-dark mass density profiles for ELOs in the FA-Z0 sample:
green dashed lines, ELOs with M,;, < 1.5 x 10'2 Mg ; orange point lines, ELOs with
1.5 x 10" Mg < Myir < 5 x 10'2 Mg; blue full lines: ELOs with M;, > 5 x 102 M.

we consider that ELOs in our FA-Z0 and EB-Z0 samples are boxy (see Section 5.3.2).
A SF effect in the stellar mass distribution also appears in Figure 5.12, again due to the

compactness of the EB-Z0 sample ELOs relative to their EFA-Z0 sample counterparts.

We now turn to analyze the baryon space distribution at halo scales. To have an
insight on how baryons of any kind are distributed relative to the dark matter at the

halo scale and beyond, the baryon fraction profile

12 ) = P () [ (), (53)

where ”bar” stands for baryons of any kind (i.e., stars, cold gas and hot gas) and
"tot” stands for matter of any kind (i.e., dark plus baryons of any kind), is drawn in
Figure 5.13 for ELOs in the FA-Z0 sample (red full lines) and in the EB-Z0 sample (blue
dashed lines) in the same range of virial mass, 1.5 X 10121\/[@ < Myir < 5 % 1012M@.
Despite individual characteristics, the fP¥(r) curves show a typical pattern in which
their values are high at the center, then they decrease and have a minimum lower than
the global value, f% = Q,/Q,, = 0.171, at a radius r?na;, then they increase again,

cosmo — i

bar

o Value at a rather

reach a maximum value and then they decrease and fall to the
large r value, larger than the corresponding virial radii. This result, i.e., that EGs
are not baryonically closed, is also indicated by recent X-ray observations (Humphrey
et al., 2006). Notice (Figure 5.14) that the increase of fP#(r) at r > rP¥ is mainly

min
bar

bar
min’ i

an separates the

contributed by hot gas, almost absent at r < r indicating that r
(inner) region where gas cooling has been possible from the (outer) region where gas

has not had time enough to cool in the ELO lifetime. Note also in Figure 5.14 that an
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Figure 5.11: The fraction of dark-to-total mass profiles, Md™k(< r)/M(< r) for
ELOs in the EA-Z0 sample; green dashed lines, ELOs with M, < 1.5 x 10'2 Mg;
orange point lines, ELOs with 1.5 x 102 Mgy < My, < 5 x 1012 M; blue full lines:
ELOs with M, > 5 x 1012 Mg. Radii are normalized to the 3D stellar half-mass radii.

important amount of hot gas is outside the spheres of radii iy, that is, it is not bound
to the self-gravitating configuration defined by the ELO halo. In fact, the mass of hot
gas increases monotonically up to r >~ 47y, and maybe also beyond this value, but it is
difficult at these large radii to properly elucidate whether or not a given hot gas mass
element belongs to a given ELO or to another close one (to alleviate this difficulty, only
those ELOs not having massive neighbors within radii of 6 xry;; have been considered to
draw this Figure). Another important result is that the hot gas mass fraction, relative
to the cold mass fraction at the ELO scale, increases with My, at given r/ryi;, and the
differences between massive and less massive ELOs can be as high as a factor of ~ 2 at
r/Tvir < 4. We see that, in massive ELOs, this excess of baryons in the form of hot gas
at the outer parts of their configurations, compensates for the lack of baryons in the
form of stars at the ELO scales.
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Figure 5.12: Left: the fraction of dark-to-total mass at R/R¥? = 1 versus the ELO
stellar masses. Red filled (blue open) symbols: ELOs in EA-Z0 (EB-Z0) sample. Error
bars account for projection effects. Green filled triangles are the values corresponding
to the SAURON sample of ellipticals. Right: the gradients of the M, gyalrk(R) /M g;?r(R)
profiles as a function of their stellar masses; green triangles with error bars are the
empirical mass-to-light gradients as determined by Napolitano et al. (2005) for galaxies

with the as x 100 shape parameter lower than 0.1 (that is, for boxy ellipticals).
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Figure 5.13: Baryon fraction profiles for ELOs in FA-Z0 sample (red full lines) and
EB-70 sample (blue dashed lines), in the same range of virial mass, 1.5 x 10'2My <
Mvir < H X 1012M®.
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Figure 5.14: The M"(< r)/Mg" profiles for typical ELOs. M"(< r) is the mass of
hot gas within a sphere of radius r. Orange point lines: ELOs with 1.5 x 1012 < M, <
5 x 10121\/1@; green dashed lines: ELOs with My, < 1.5 X 1012M@. Only isolated ELOs
have been considered.
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5.2.5 Total Three-Dimensional Mass Density Profiles

We now address the issue of the total mass (i.e., baryonic plus dark) density profiles.
In Figure 5.15 they are drawn for ELOs in the FA-Z0 sample (upper panel) as well as
for those in the EB-Z0 sample (lower panel). In both cases, the profiles corresponding
to ELOs in different mass intervals have been drawn with different line and color codes.
Some important results are that i), they are well fit by power-law expressions p*°*(r) o
r~7 in a range of r/ry; values larger than two decades, ii), the slope of the power-
law increases with decreasing ELO mass, and, iii) a slight SF effects appears, but only
at the very inner regions, with EFB-7Z0 sample ELOs showing a worse fit to a power
law than their FA-Z0 counterparts. Koopmans et al. (2006) have also found that the
total mass density profiles of their massive (< o, >= 263 km s71) lens EGs can be
fit by power-law expressions within their Einstein radii (< Rpingg >= 4.2 + 0.4 kpc,
with < REmst/REght >= 0.52 £+ 0.04, i.e., the inner region), whose average slope is
<y >= 2.017092 4+ 0.05 (68 percent C.L.), with an intrinsic scatter of 0.12. These
results, i.e., that all the components combine to make almost an isothermal profile,
have been confirmed for early-type galaxies up to r < 100 kpc by Gavazzi et al. (2007).
To elucidate how well the total mass density profiles of ELOs compare with these results,
in Figure 5.16 we plot the slopes v for ELOs, as well as for SLACS lens ellipticals (Table
1, Koopmans et al., 2006), versus their central L.O.S. stellar velocity dispersions. The

fitting range for ELOs used to draw this Figure is r < 7“3%5"{)0. Same trends are obtained

star
e,bo

results for ELO and SLACS lens galaxy samples are consistent in the range of velocity

using 7 or 1y but for slightly higher or lower values of v respectively. We see that

dispersion values where they coincide.
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Figure 5.15: The total mass density profiles for ELOs in the EFA-Z0 sample (up) and
in the EB-Z0 sample (down). Green dashed lines: ELOs with M, < 1.5 x 10'2Mgy;
orange point-dashed lines: ELOs with 1.5 x 1012M@ < My < 5 x 1012 Mg; blue full
lines: ELOs with 5 x 10121\/[@ < M. The violet long-dashed lines are the one sigma
interval for the slope resulting from fits to power-law profiles of lens ellipticals from
Koopmans et al. (2006).
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Figure 5.16: The logarithmic slopes corresponding to the total mass density profiles
for ELOs in the EA-Z0 (red filled circles) and the EB-Z0 samples (blue open circles),
versus their central L.O.S. stellar velocity dispersions. Green triangles with error bars
correspond to data on SLACS lens ellipticals, as given in Table 1 of Koopmans et al.
(2006).
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5.2.6 Projected Stellar Mass Density Profiles

There has been a recent consensus on the applicability to virtually all elliptical galaxies
of the Sérsic law to characterize their photometric properties (see Section 3.2). We have
built a fitting method trying to mimic as much as possible the observational techniques
(see Section 4.5) and we want to check if X5%*'(R) can be fitted by a Sérsic-like law
comparing our results with observational data. This is in fact the case as shown in
Figure 5.17 for several typical ELOs drawn from both FA-Z0 and EB-Z0 samples (see
Kawata & Gibson, 2005, for a similar result concerning one virtual elliptical galaxy).
We would deepen into the different relations between all these fundamental parameters
in the next Chapter 6.3.

100 —————
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10° | 03: n=6.664; RXx=6.187; Mywr=1.177E11; x*=1.768E-5—

04: n=3.427; R¥r=2.643; M:;}’:ﬁ.DSBElU: X?=1.163E-5 J

Z(R) (Mgxkpe?)

107 |

Figure 5.17: Projected stellar mass density profiles for different ELOs (black full line)
along with their best fit by a Sérsic law (red long dashed). The corresponding shape
parameter best values and minimal x? per-degree-of freedom are also shown. The

short dashed line stands for the geometric mean y5* = 6.3 used to calculate the outer
star

boundary Ra7. Dotted lines stand for the lower and higher limits of 73

As a test to check the consistency of the fits, we have compared the projected effective
radii, szﬁg, and the stellar mass, M Cs}t,i{m, obtained from the different fits versus the ones
obtained directly from the profiles and find very similar results. We also checked that
fixing the mass by boundary conditions and leaving just two free parameters (n and
thﬁg) gave us very similar results and trends. On the other side, using a de Vaucouleurs
(1948) analytical profile (fixing n = 4) produced much poorer fits. In addition, we have
checked the robustness of our method testing how all the different input variables that
are used affect to the final fit. These tests have confirmed all our results and that all
the different trends we found do not disappear. However, in order to compare with
observational data we found that the outer and inner boundaries Rpax and Rpin are

the most important parameters for the fit. As R.x increases, the shape parameter n
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also shows a softly increase. However as long as the object is well defined up to the Ryax
(no satellites, bumps, etc.) increasing this radius in a ~ 150% produces just a ~ 4%
increase in the different parameters of the fit. Moreover, concerning the comparison

with observations, we can see in Figure 5.17 that the particular 75"

value used within
its range of best values (dotted lines in Figure 5.17) produce very similar Rg7 results.
Therefore these three different fits produce very similar results with a lower dispersion

than the one produced just from projection effects.

5.3 Kinematic Profiles

Shapes and mass density profiles (i.e., positions) are related to the 3D velocity dis-
tributions of relaxed E galaxies through the Jeans equation (see Binney & Tremaine,
1987). Observationally, the information on such 3D distributions is not available for
external galaxies, only the line-of-sight velocity distributions (LOSVD) can be inferred
from their spectra. They have been found to be close to gaussian (Binney & Tremaine,
1987; van der Marel & Franx, 1993), so that simple equilibrium models can be expected
to adequately describe their dynamical state (de Zeeuw & Franx, 1991). The complete
six dimensional phase space information for each of the particles sampling the ELOs
provided by numerical simulations, allow us to calculate the velocity profiles, Vi (r),
the 3D profiles for the velocity dispersion, osp(r), and their corresponding anisotropy
profiles. These profiles, as well as the LOS velocity Vi,s(R) and LOS velocity dispersion
o10s(R) profiles, are analyzed in detail in this section. All the main algorithms used to

compute each of these quantities are described in Section 4.5

5.3.1 Three-Dimensional Velocity Distributions

The complete six dimensional phase space information for each of the particles sampling
the ELOs provided by numerical simulations, allow us to calculate the 3D profiles for the
velocity dispersion, osp(r), as well as the circular velocity profiles, Vi (7). In Figure 5.18
we draw the Vi (r) profiles (full line), as well as their dark matter (short-dashed line)
and baryonic contributions (stars, long-dashed line; stars plus cold gas, point line).
The Vi (r) profiles provide another measure of ELO mass distribution. We note
in Figure 5.18 that the baryon mass distribution is more concentrated than the dark
matter one due to energy losses by the gaseous component before being transformed into
stars. This is a general property of the circular velocity profiles of the ELO samples.
Moreover, objects in EB-Z0 sample are more concentrated than their FA-Z0 sample
counterparts, because of the SF implementation: the amount of baryons at their central
volumes relative to dark matter is always lower in EA-Z0 than in EB-Z0 objects; this
is a small scale effect as r ~ 30 kpc or r ~ 40 kpc radii enclose roughly similar amounts

of baryons or dark matter in any cases.
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Figure 5.18: The circular velocities profiles of two typical ELOs in the FA-Z0 sample

(upper panels) and their EB-Z0 sample counterparts (lower panels). Black full line:
total mass; blue short-dashed line: dark matter contribution; green long-dashed line:

In Figure 5.19 we draw, for the same ELOs, the o3p(r) profiles as measured by
dark
o5y (1),

stellar mass contribution; red point line: cold baryon contribution.
(r), starred symbols and short-dashed lines), and by dark matter, (

dark

stars, (055"

open circles and long-dashed lines) as proof particles in the overall potential well. These

profiles are in any case decreasing outwards, both for the dark matter and for the stellar
S (r) is always

components. An outstanding result illustrated by Figure 5.19 is that o
(r) (because stars are made out of cooled gas), with 5" (1) /oark(r) ~

higher than o3

star
0.8, in consistency with the values found by Loewenstein (2000) on theoretical grounds
and by Dekel et al. (2005) from pre-prepared simulations of mergers of disc galaxies.

This is the so-called kinematical segregation (Saiz et al., 2003, 2004).
This is so because stars are formed from gas that had lost energy by cooling. This

result on kinematical segregation is very interesting because it has the implication that
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the use of stellar kinematics to measure the total mass of ellipticals could result into
inaccurate values

To further analyze this issue, in Figure 5.20 we plot the 0§ (r)/o$&% (r) ratios for
the ELOS in both the FA-Z0 sample and in the EB-Z0 sample, with different color and
line codes depending on the ELO mass range. We see that the kinematical segregation
does not show either a clear mass dependence, or a radial dependence. Moreover, the

SF parameterization effect is only mild.
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Figure 5.19: The o3p(r) profiles of two typical ELOs in the FA-Z0 sample (upper panels)
and their EB-Z0 sample counterparts (lower panels). Also shown are the anisotropy
profiles Bani(r). Blue long-dashed lines: dark matter; red short-dashed lines: stars.

The anisotropy profile, Bani(r), is also represented in Figure 5.19 for typical ELOs
in the sample, for their dark matter and stellar particle components. The anisotropy is
always positive (i.e., an excess of dispersion in radial motions), the profiles are almost
constant, except at the innermost regions, and the stellar component is always more

anisotropic than the dark matter one, presumably as a consequence of the mergers
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involved in the ELO mass assembly (see Section 9.2). In fact, the characteristics of

star
ani

the stellar anisotropy profiles (roughly constant and £5%3(r) ~ 0.5 in most cases) are
consistent with those found by Dekel et al. (2005), where they conclude that large radial

anisotropy is generic to the stellar component of merger remnants of any kind.
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Figure 5.20: The o5 (r)/o3ak(r) ratio profiles for ELOs in EA-Z0 (upper panel) and
EB-Z70 (lower panel) samples. Different color and line codes stand for ELO mass inter-
vals, as in Figure 9.

5.3.2 Stellar LOS Velocity and Velocity Dispersion Profiles

Figure 5.19 provide an illustration of the general characteristics of the lower-order mo-
ments of the 3D velocity distribution. The profiles plot in these Figures are not ob-
servationally available, but only the lower-order moments of the LOSVD are. We have
measured the stellar line-of-sight velocity and the stellar velocity dispersion profiles,
Vitar(R) and of'®"(R), along one hundred random projections for all ELOs (see details
in 4.5). Studying these stellar line-of-sight velocity profiles we have found that in some
cases ELOs do indeed show a clear rotation curve, while in most cases the rotation is
only modest or even very low, as illustrated in Figure 5.21.

We now comment on the major axis LOS stellar velocity dispersion profiles of ELOs
(Figure 5.21). Their most outstanding feature is the decrease of the of%"(R) profiles in
some cases and particularly so along some LOS directions at large R. These profiles are
suited to compare with stellar kinematics data. In other cases, for example to compare
with planetary nebulae data, the LOS velocity dispersion profiles must be calculated by
averaging over the LOS velocities of stars placed within cylindrical shells, with their axes
in the LOS direction. Figure 5.22 is a plot of such profiles normalized to als(fsr(RZfﬁf)) for

the FA-Z0 sample ELOs; each panel corresponds to a different orthogonal projection.

star

To make clearer the decline of the 072" (R) profiles, in Figure 5.23 we plot, at different
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R (kpc) R (kpc)

Figure 5.21: Left panel: Full line: the major axis stellar LOS velocity profile along
the spin direction for an ELO in EA-Z0 sample. Point and dashed lines: same as the
continuous line taking the LOS direction normal to the ELO spin vector. This particular
ELO rotates. Right panel: Same as the left panel for another ELO. In this case, the
rotation is only mild.

R values, the averages of the stacked profiles shown in Figure 5.22 with their dispersions
(green points and error bars), as well as the averages of the profiles corresponding to
young stars (age < 3 Gyears, orange squares and error bars), normalized for each ELO
to their corresponding afgsr(thﬁf)) The decline of these velocity dispersion profiles can
be clearly appreciated, as well as the slightly larger decline of the profiles corresponding
to the younger stellar populations. These results are consistent, within their dispersions,
with that shown by Dekel et al. (2005) in their figure 2 (lower panel). They are also
marginally consistent with the decline shown by PN data in the NGC 821, NGC 3379,
NGC 4494 and NGC 4697 galaxies (Romanowsky et al., 2003; Romanowsky, 2006).
Note, however, that our ELOs are boxy, while the ay x 100/a shape parameters for
these galaxies are 2.5, 0.2, 0.3 and 1.4, respectively, that is, they are rather disky

ellipticals.

5.3.2.1 Some Details About the Rotation of ELOs

To quantify the amount of rotation in ELOs and its possible dependence on the mass

scale, in Figure 5.24 we plot the ratios ¢ot = Vinin/ (Vanaj + V2
the ELO virial masses, for ELOs in both the £A-7Z0 and the EB-Z0 samples (Vinaj and

star
os

1/2 .
)2 as a function of
Vmin are the maximum values of the V;2!*"(R) profile when measured along the major
and the minor axes, respectively). When the ELO shows a clear rotation curve, Vi
is much lower than Vj,.;, and the ¢, ratio is low; by contrast, when the rotation is

unimportant, then Vipi, ~ Vinaj and ¢ror ~ 0.7. For a given ELO, the ¢ value depends
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on the direction taken as LOS direction, in such a way that it is maximum when the
ELO spin is taken as LOS direction, and minimum when the LOS direction is normal
to the ELO spin vector, that is, when rotation stands out. This is the LOS direction
taken to draw this Figure, where we see that there is not a clear mass dependence, that
most ELOs are in between the two situations described above and that the values of the
Crot, Tatio of ELOs are typical of boxy ellipticals (see, for example, Binney & Tremaine,
1987, figure 4.39). A detailed study of the rotation of different sample ELOs at z = 0

and its relation with shape can be found in Chapter 7.
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Figure 5.22: LOS velocity dispersion velocity profiles along three different orthogonal
projections for ELOs in EA-Z0 sample up to 6 effective radii. The profiles are normalized
to their value at R:tﬁg for each ELO. Green full lines: ELOs with M.;; < 1.5 x 1012M;
orange point-dashed lines: ELOs with 1.5 x 10121\/[@ < Myir < 5x 1012 Mg); blue dashed
lines: ELOs with 5 x 1012Mg < M.



5.3 Kinematic Profiles 109

e (Re,)

(R)/o

star
los

g

Figure 5.23: The FA-Z0 sample average LOS velocity dispersion profiles normalized
to their values at R for each ELO (green points) along with their 1 o dispersions.

Orange points and error bars: the same for the young stellar particles, with the same
normalization.
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Figure 5.24: The ¢t ratios as a function of the virial mass for ELOs in the samples
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5.4 Conclusions

In this Chapter we have presented an analysis of a set of samples of ELOs at z =
0, formed in different cosmological simulations. The information about position and
velocity distributions of the ELO particles of different kinds (dark matter, stars, cold
gas, hot gas) provided by the simulations, allows a detailed study of their intrinsic three
dimensional mass and velocity distributions. We have reported on the three dimensional
mass density, circular velocity and velocity dispersion profiles, as well as the projected
stellar mass density profiles and the LOS velocity dispersion profiles.

The first step in the program of studying the origins of elliptical galaxies through
self-consistent simulations, is to make sure that they produce ELO samples that have
counterparts in the real local Universe. To answer to this question, we have compared
along this chapter our virtual results with new observational data, obtaining a very

satisfactory agreement. To be specific:

e The projected stellar mass profile, X% (R), can be adequately fitted by a Sérsic-

like law.

e The fraction of dark-to-total mass inside the projected half-mass radii are con-
sistent with the observational ones obtained by Cappellari et al. (2006) from
SAURON data.

e The gradients of the dark-to-stellar M™% (< ) /M%7 (< 1) profiles as a function of
their stellar masses, are consistent with those observationally found by Napolitano
et al. (2005) for boxy ellipticals.

e The total mass (i.e., baryonic plus dark) density profiles can be well fit by a power-
law expression in a large range of r/ry;, values, with power-law slopes that are
consistent with, within the dispersion, or slightly higher than those observationally
found by Koopmans et al. (2006) for massive lens ellipticals within their Einstein
radii.

e The line-of-sight velocity profiles along the major axis show, in some cases, a clear
rotation, even if in most cases the rotation is modest or low. The values of the

rotation ratio along the major and minor axis (a measure of the rotation in ELOs)

does not depend on the mass scale
e The values spanned by the rotation ratios of ELOs are typical of boxy ellipticals.

e The line-of-sight velocity dispersion profiles, ojos(R), decline outwards at large
R, and the slope slightly increases when only the younger stellar populations are
considered. These profiles are only marginally consistent with data on PNs at
large radii; but these correspond to disky ellipticals while our virtual ellipticals

are rather boxy.
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These agreements with observational data strongly suggest that the intrinsic three-
dimensional dark and bright matter mass and velocity distributions we get in our sim-
ulations might also adequately describe real ellipticals. We now summarize our most

important findings on the study of the mass and velocity profiles of ELOs:

e ELOs are embedded in extended massive dark matter halos.

e The best fits of their spherically-averaged dark matter density profiles to usual
analytical formulas (Hern90, NFW, TD, JS, Eina) are generally provided by the
two last formulas. The quality of the fits is good, so that ELO halos form a two-
parameter family where the two parameters are correlated. This is consistent with
those produced in purely N-body simulations. The JS inner slope parameter, «,
is always higher than the NFW value (a =1).

e The slope parameters grow as the ELO mass scale decreases, indicating that the

halo concentration grows when the mass decreases.

e Halos have suffered from adiabatic contraction. This can be made quantitative
by comparing the plot of the density at the Einasto scale, p_o, versus the scale
r_9 = ap, with the plot provided by Navarro et al. (2004b, results of purely N-body

simulations).

e At the ELO scale, most baryons have turned into stars. The three dimensional
stellar-mass density profiles can be fit by Einasto or JS profiles, but with small

r_g values.

e The mass distribution homology is broken in the stellar mass as well as in the dark-
versus bright-mass distributions, with the stellar mass distribution relative to dark
mass one less concentrated with increasing ELO mass. That is, massive ELOs miss
baryons at short scales as compared with less massive ones, when we normalize
to the dark matter content. This result is consistent with the observational ones
by Cappellari et al. (2006) from SAURON data, as well as by Napolitano et al.
(2005) we quoted above.

e At the halo scale, the baryon fraction profiles have been found to show a typical
pattern, where their values are high at the center, then they decrease and have a
minimum roughly at 0.3 < rﬁgn /1vir <0.7, well below the global value, €/, =
0.171, then they increase again, reach a maximum value and then they decrease
and fall to the global €/, value well beyond the virial radii ryi;. This suggests
that the baryons that massive ELOs miss at short scales (stars) are found at
the outskirts of the configuration as diffuse hot gas. This result could reflect the
presence of a stable virial shock that prevents gas infall more efficiently as mass
increases (Dekel & Birnboim, 2006).
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e Concerning kinematics, stellar and dark matter particles constitute a dynamically
hot component with an important velocity dispersion. In addition, ELO velocity
dispersion profiles in three dimensions are slightly decreasing for increasing r, both

for dark matter and stellar particles, &% (r) and o5%*(r).

e The dark and bright matter components of ELOs are cinematically segregated, as
we have found that (o$&%(r))2 ~ (1.4 - 2) (05%7(r))?, confirming previous results
(Saiz et al., 2003; Loewenstein, 2000; Dekel et al., 2005). This is so because stars

are formed from gas that had lost energy by cooling.
e This kinematical segregation does not show any clear mass or radial dependence.

e The anisotropy is always positive (i.e., an excess of radial motions) and almost non-
varying with r inside the ELOs. Recall, however, that EL.Os have been identified as
dynamically relaxed objects: there are not recent mergers in the samples analyzed
in this Chapter.

e The stellar component generally shows more anisotropy than the dark component,
maybe derived from the radial motion of the gas particles that gave rise to the

stars.

As we can see some of conclusions pointed above are really interesting and require
further investigation. To this end, once we have analyzed the different structural and
kinematical profiles of our ELOs, our next logical step has been to study the funda-
mental parameters that characterize them, their correlations and to try to make further
comparisons with observations. In this Chapter we have already analyzed some of them,
but in the next one we have delved deeper into this issue and tried to confirm some of
the results pointed here.

Therefore, our final conclusions concerning the structure and kinematics of our simu-
lated elliptical galaxies and detailed discussion on the robustness of the results presented
here for a different cosmological model, resolution, box size, etc. can be found at the
end of the next Chapter (Section 6.6).



Chapter 6

Ellipticals at z = 0: Fundamental

Parameters!

6.1 Introduction

In the previous chapter we have studied the structural and kinematical profiles of our
virtual ellipticals. We have analyzed these profiles and have given a qualitative de-
scription of their properties. In this Chapter we will use the different fundamental
parameters that characterize the structural and kinematical properties of the simulated
ellipticals at different scales, to give a more quantitative description of them, compare

with real observations and to deepen into the origin of their observable relations.

This study has been done for all the different simulations discussed in 4.2. However
for the sake of clarity, in this chapter, as well as in the previous one, we would first
center our analysis on the EA-Z0 and EB-Z0 elliptical-like object (ELO) main samples.
We discuss deeply the robustness of results and possible caveats between all the samples
at the end of this chapter.

First, Section 6.2 is focused on the Fundamental Plane relation. Thereafter, in
section 6.3 we examine the Photometric plane relation and their connection with the
previous one. Section 6.4 describes the stellar age properties of our simulated ellipticals
and their relation with the different structural and kinematical fundamental parame-
ters. Section 6.5 includes different tests concerning the robustness of our main results.

Summary and final conclusions can be found in the last Section (6.6).

'Based on Onorbe, Dominguez-Tenreiro, Sdiz, Serna, & Artal (2005); Onorbe, Dominguez-Tenreiro,
Sdiz, Artal, & Serna (2006); Ofiorbe, Dominguez-Tenreiro, & Siiz (2006); Gonzélez-Garcia, Onorbe,
Dominguez-Tenreiro, & Gémez-Flechoso (2009)
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6.2 Fundamental Parameters: The Fundamental Plane

In this Section we introduce most of the structural and kinematical fundamental pa-
rameters of our ELOs, and we deepen into the tightest observed relation among these
parameters for elliptical galaxies: the Fundamental Plane (see Section 3.2 for a theo-
retical introduction to this issue).To help the reader, we remind that in Table 4.4 and

Table 4.5 a list of the parameter names and symbols used in this thesis can be found.

6.2.1 Fundamental Parameters: Halo Scale

We have already seen in Section 4.4 that from a definition of a characteristic overdensity,
we can obtain a characteristic radius, named the virial radius, ryi,, which define the halo
scale for each ELO. From this radius we can build characteristic masses, as the virial
mass, My, for the total mass. We can also describe more mass scales associated to the
different constituents considered here: dark matter, Mﬁlark, baryons of any kind, Mﬁlark,
cold baryons (that is, cold gas particles with 7' < 3 x 10* K and stellar particles), Mﬁb,
stars, M:* and hot gas (that is, gaseous particles with 7" > 3 x 10* K), Mﬁlg. Also, a
measure of the compactness of the mass distribution for the different ELO constituents,
at the halo scale, is given by their respective half-mass radii, or radii enclosing half the

tot
oh are

mass of these constituents within ry;; for example, the overall half-mass radii, r
the radii of the sphere enclosing Myi,/2, the stellar half-mass radii erﬁr enclose MF%r /2
and so on. Concerning kinematics, the most significant velocity dispersion parameter
for ELOs at the halo scale is og‘?ﬁ, the average 3-dimensional velocity dispersion of the
whole elliptical up to the virial radius, including both dark and baryonic matter.

In Figure 6.1 we plot the different correlations between the structural and kinemat-
ical fundamental parameters at the halo scale: My, rgoﬁ and a:t;”fl. As expected from
the virial theorem all of them show a very good correlation. We can see also that at
the halo scale FA and EB samples do not present significant differences, indicating that
at this scale the star formation algorithm is not really important. Note that the virial
masses of ELOs have a lower limit of 3.7 x 10! M.

We now comment on length scales. As we have seen in Figure 6.1 the overall half-

mass radius 7' are closely correlated to Myi,. Concerning baryonic mass distributions,
9

dissipation in shocks and gas cooling play now important roles to determine them. And

star

on radii depend on how much energy was radiated before gaseous particles

so, the r
became dense enough to be turned into stars. This, in turn, depends on the mass scale,
on the one hand, and, in a given mass range, on the values of SF parameters, on the
other hand. And so, more massive ELOs tend to have larger erﬁr radii and, in a given
mass range, FA-7Z0 sample ELOs tend to have larger erﬁr radii than their £B-Z0 sample
counterparts, because the SF implementation in the code demands denser gas to form

stars in the later than in the former. This effect is more remarkable for sizes at the scale
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Figure 6.1: The different correlations between the structural and kinematical funda-

mental parameters at the halo scale: the virial mass, My, the overall half-mass radius,

rgoﬁ and the total velocity dispersion, ag‘fﬁ. Filled red symbols: FA-Z0 sample ELOs;

open blue symbols: EB-Z0 sample ELOs.

of the baryonic object, as we shall see in the next subsection.

Concerning the different mass scales, all of them are strongly correlated with My,
as shown in Figure 6.2(a) for Mg%r.

An important point is the amount of gas infall relative to the halo mass scale. As
illustrated in Figure 6.2(b) for Mﬁb/MVir, any of the ratios Mﬁb/Mvir, M}‘ib/MVir or
Mﬁtar /Myiy decreases as My, increases, as observationally found at smaller scales (see
Chapter 3). Note that we have in any case M}}far/MVir < Qp/Q = 0.171, the average
cosmic fraction, so that there is a lack of baryons within ry; relative to the dark mass
content that becomes more important as My increases. Otherwise, heating processes
along ELO assembly give rise to a hot gas halo around the objects, partially beyond the

virial radii. The amount of hot gas mass outside the virial radii, normalized to the ELO
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Figure 6.2: a) Masses at the halo scale of stars versus their corresponding virial masses.
b) Masses of cold baryons inside the virial radii in units of the corresponding virial
mass for the ELO sample. Filled red symbols: EA-Z0 sample ELOs; open blue symbols:
EB-70 sample ELOs.

stellar mass, M (see Section 6.2.2), increases with the mass scale. It also increases

relative to the cold gas content at the halo scale.

We now turn again to the relation among the three main parameters that described
the halo scale: the virial mass, M., the overall half-mass radius, ré"ﬁ and the total
velocity dispersion, J:tfﬁ. In Section 3.2 we have introduced the virial theorem (Eq.
3.4), that relates the characteristic mass, total velocity dispersion and a characteristic
gravitational radius. We have chosen rgoﬁ as this characteristic gravitational radius.

To test that this is in fact the case, in Figure 6.3 we plot the ¢ = G M,/ (agoﬁ)Qrgoﬁ
form factors as a function of M. The lack of any significant mass or SF parameter-
ization effects in this Figure are quantitatively confirmed through a fit to power laws
of the form ¢; = Af(Mgtoar)Bf7 whose results in Table 6.3 are consistent with ¢; being
independent of the ELO mass scale or SF parameter values. Note also that the ¢¢ val-
ues are as expected (Binney & Tremaine, 1987) confirming the selection of rgoﬁ as the
characteristic gravitational radius and that these three parameters define a plane: The

Virial Plane.

6.2.2 Fundamental Parameters: Baryonic Object Scale

Let us now turn to the study of ELOs at the scale of the baryonic objects themselves,
that is, at scales of some tens of kpcs (see Section 4.4). Physically, the mass parameter
at the ELO scale is Mg})’, the total amount of cold baryons that have reached the central
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Figure 6.3: The ¢t = GMy;,/ (Ug?ﬁ)Qrz?ﬁ form factors (see Equation 3.4) versus the ELO

mass scale. Symbols are as in previous Figures. This Figure confirms that rgoﬁ and Ugoﬁ

are the size and velocity dispersion ELO parameters that must be used in the virial
theorem.

volume of the halos, forming an ELO. Most of these cold baryons have turned into
stars, depending on the strength of the dynamical activity in the volume surrounding the
proto-ELO at high z, and, also, on the values of the SF parameters. Therefore the stellar
mass, M, can be used as a good characteristic mass scale for the baryonic object and
have the great advantage of being a parameter largely obtained from luminosity data
trough modeling (see, for example, Kauffmann et al., 2003b). Effective or half-mass
radii at the baryonic object scale, rgio and rgfgg, can be defined as those radii enclosing
half the Mﬁg or Mgf)ar masses, respectively.

To illustrate how the halo total mass, My, determines the ELO structure at kpc
scales, in Figures 6.4(a) and 6.4(b) we draw My and rl versus Myir, respectively, for
the ELO sample. A good correlation is apparent in Figure 6.4(a), where it is shown that
ELO stellar masses are mainly determined by the halo mass scale, M., with only a very
slight dependence on the SF parameterization (FA-Z0 type ELOs have a slightly higher
stellar content than their FB-Z0 counterparts, as expected). Figure 6.4(b) shows also
a good correlation between the length scales for the stellar masses and My, but now
the sizes depend also on the SF parameters. The physical foundations of this behavior
are the same as discussed in the previous section. Note that ELOs have a lower limit in
their stellar mass content of 3.8 x 10'9 M, (see Kauffmann et al., 2003a, for a similar
result in SDSS early-type galaxies). Exactly the same trends with the virial mass are

found for the cold baryon fundamental parameterst)lg and rﬁ%.

We now address the correlations of normalized mass and size scales. The increasing

behavior of the M, /Mf)g and My, /Mﬁtoar ratios with increasing mass scale are very
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Figure 6.4: a) Stellar masses at the baryonic object scale versus halo mass for the ELO
sample. b) The 3D half-mass radii for stellar masses at the baryonic object scale versus
halo mass for the ELO sample. Symbols are as in previous Figures.

interesting. In particular, the last ratio (Figure 6.5) follows the same trends as the
empirical M, /L versus L relation, see Bernardi et al. (2003b). The results of a fit to a
power law of the form My, /M5 = Ay, (ME%)Pvir are given in Table 6.3, where we see
that they do not depend on the SF parameterization. We would discuss more on this
issue downwards.

To have an idea on how important cold baryon infall has been at the baryonic object
scale relative to that at the halo scale, in Figure 6.6 the Mﬁb /M{;'g ratios are drawn as
a function of the ELO mass scale. We see that in any case more than half the mass of
cold baryons inside the virial radii are concentrated in the central baryonic object, and
that there is a mass effect in the sense that this fraction grows with decreasing ELO
mass scale, and no appreciable SF effect.

Concerning kinematics, physically, a measure of the average dynamical state of stars
in the ELO itself is provided by their mean square velocity relative to the ELO cen-
ter of mass, or average three-dimensional velocity dispersion agfﬁf). All the significant
parameters at the baryonic object scale are listed in Table 4.4.

In the last section it has been shown that the structural and kinematical parameters
at the halo scale satisfy the virial relation. In the last section it has been shown that the
mass, size and velocity dispersion parameters at the halo scale satisfy virial relations.
This result is, however, at odds with the tilt of the observed FP of ellipticals discussed
in 3.2, that involves the L, R and og observed variables, whose virtual counterparts
describe the ELO at the scale of the baryonic object. So, we have first to analyze

whether or not the mass, size and velocity dispersion of ELOs at this scale define planes
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Figure 6.5: The My, /M}igar ratios as a function of the ELO mass scale. Symbols are as
in previous Figures.

tilted relative to the virial one.

To this end, we have carried out a principal component analysis (PCA) of the FA-Z0

star

and EB-Z0 samples in the three dimensional variables E = log o M%", r = log; rS%"

and v = log;, Ugfﬁf) through their 3 x 3 correlation matrix C. PCA is a technique that can
be used to simplify a dataset; more formally it is a linear transformation that chooses a
new coordinate system for the data set such that the greatest variance by any projection
of the data set comes to lie on the first axis (then called the first principal component),
the second greatest variance on the second axis, and so on. Therefore, by finding the
eigenvalues and eigenvectors of the covariance matrix, we find that the eigenvectors with
the largest eigenvalues correspond to the dimensions that have the strongest correlation
in the dataset (Saglia et al., 2001). By this, in a three-dimension space as we are using,
if one eigenvalue is much lower than the other two we say that our data populates a

plane. The square root of this lowest eigenvalue is the scatter of the plane.

We have found that, irrespective of the SF parameterization, one of the eigenvalues
of C is considerably smaller than the others (see Table 6.1), so that ELOs populate in
any case a flattened ellipsoid close to a two-dimensional plane in the (F,r,v) space that
we call the intrinsic dynamical plane (IDP); the FP is the observed manifestation of

this IDP. The eigenvectors of C indicate that the projection

E—-E=0aP@r — /) +~*P(v - 0), (6.1)

where E, 7 and ¥ are the mean values of the E, r and v variables, shows the IDP viewed
edge-on. Table 6.1 gives the eigenvalues of the correlation matrix C (A1, A2, Az), the

planes Eq. (6.1), as well as their corresponding thicknesses o gy, both for the EA-Z0 and
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Figure 6.6: The MP /Mg ratios as a function of the ELO mass scale. Symbols are as
in previous Figures.

’ Sample No. E T v A1 Ao A3 P 'y3D OErv
EA-70 26 10.987 0.735 2.312 0.12930 0.00462 0.00020 0.459 1.928 0.014
EB-70 17 11.245 0.667 2.420 0.14509 0.00968 0.00014 0.392 1.776 0.012

FEA-STAR-Z0 56 10.854 0.598 2.279 0.16664 0.00699 0.00077 0.586 1.529 0.028

Table 6.1: Results of PCA at z = 0. Column 2: ELO number in the sample. Columns
3, 4 and 5: sample mean values of the E, r and v variables. Columns 6, 7 and 8:
eigenvalues of the correlation matrix. Columns 9 and 10: coefficients of the plane (Eq.
6.1). Column 11: IDP scatter in the E, r and v variables.

EB-70 samples. The IDPs are in fact tilted relative to the virial plane (characterized
by a = 1,7 = 2), and their scatter is very low as measured by their thicknesses o gy, .
Note that the values of the eigenvalues of the PCA analysis are not dependent on the SF
parameterization. In Table 6.1 we also present the IDP for the FA-STAR-Z0 sample.
This sample includes ELOs that are not isolated up to the halo scale, therefore is a larger
sample and more representative of a real one (see Section 4.4.1). We have confirmed
that these ELOs also populate the IDP although slightly increasing the scatter of the
plane.

In Figure 6.7 we plot the (E,v), (E,r) and (r,v) projections of the IDPs corre-
sponding both to the FA-Z0 sample and the EB-Z0 sample. We see that the three plots
show correlations and that these are very tight for the first of them. It is important to
note that this correlation between agfﬁg and M has the same zero-point both for the
EA-70 sample and the EB-Z0 sample. Moreover, in these plots we clearly see again that
the main difference between the FA and EB ELO samples are in their characteristic
radii due to their differences in the star formation parameters of the simulations (see

the discussion above).
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Figure 6.7: The IDPs for the FA-Z0 and EB-Z0 samples. Projections on the (F,v),
(E,r) and (r,v) coordinate planes are shown.

6.2.3 Fundamental Parameters: Projected Baryonic Object Scale

In the previous section we have studied the fundamental parameters of the intrinsic
baryonic object and discovered that they define a flattened ellipsoid close to a plane
(the intrinsic dynamical plane, IDP). This plane is tilted relative to the virial one, and
its observational projected counterparts (the luminosity L, effective projected size Rgght,
and the stellar central 1.0.s. velocity dispersion, o() enter the definition of the observed
FP (see Section 3.2.2). Therefore the next step is to check how the IDP is related with

the observed Fundamental Plane.

To make this analysis as clear as possible, Bender et al. (1992) introduced an or-
thogonal coordinate system, x; system, i=1,2,3 in order to improve the study of the
Fundamental Plane. The x coordinate system was obtained by a simple orthogonal

coordinate transformation (i.e. rotation), applied to the observed parameters. The par-
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ticular choice of orthogonal coordinate transformation was made so that x; is a simple
measure of galaxy mass, k3 is proportional to the mass-to-light ratio, the projection
K1 — ko correspond to a face-on view of the Fundamental Plane and the projection

k3 — k1 shows the Fundamental Plane edge-on:

k1 = (2log(00) + log Re&™)/v/2 (6.2)
ko = (2log g + 2log < 188 > —logRlEM) /1/6 (6.3)
k3 = (2logog — log < 118 > _log RigM) /\/3 (6.4)

Assuming that the projected stellar mass density profile, ¥5%T(R), can be taken

as a measure of the surface brightness profile, then < Y% > = ¢ < Jlight > = with
¢ a constant, and RS ~ R and we can look for a fundamental plane (hereafter,

the dynamical FP) in the 3-space of the structural and dynamical parameters Rngg,

< ¥star > and o0 directly provided by the hydrodynamical simulations. Therefore,

los,0?

the dynamical K;P variables, free of age, metallicity or IMF effects, can be written as
(S4iz et al., 2003):

rp = (2log (ofah) + log REL/V2 (6.5)
star

k5 = (2log (07a2)) + 2log(> ) — log REfr) /V/6 (6.6)
star

k5 = (2log (o1ih) — log(> ")e — log REEL) /V/3 (6.7)

and they are related to the original x coordinates through the expressions:

K1 = KD (6.8)

o VB, M

R9g = Ky — ? log( I ) (69)
\/g Mstar
K3 = K3 + 3 log(%) (6.10)

In Section 3.2 we have discussed how to obtain the observational fundamental pa-
rameters from the projected structural and kinematical profiles. We just recall that we

fats star : star : : :
have computed the characteristic mass, Mcyl,bo’ radius, Re,bo, and velocity dispersion,

af(fs%, for each ELO in one-hundred random projections. The /{P coordinates are also
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computed in this form. Unless stated, we use the mean value over all these projections
and its dispersion. We remind the reader that all the values for the different fundamental
parameters of the ELO samples can be found in Appendix D.

In order to compare our results with observational data, we decided to use the
SDSS catalog (York et al., 2000). We utilized a sample of 9000 early-type objects from
SDSS studied by Bernardi et al. (2003a,b,c,d). A maximum likelihood estimation of the
correlations among observables (Luminosity, effective radius, surface brightness, color
and velocity dispersion) is made by these authors. We have also, from Kauffmann
et al. (2003b), a median likelihood estimates of stellar burst fraction, dust attenuation
strengths stellar masses and stellar mass-to-light ratios for a complete sample of 80000
galaxies drawn from SDSS. The most interesting thing of this last job concerning our
work is that they obtain a constant stellar mass-to-light ratio for early-type galaxies
in the range of masses of our samples. The values of the logarithm of this ratio are
log 3% ~ (.53 and log 5% ~ (.25, with dispersions og < 0.15 and 0.1, in the r and
z SDSS bands, respectively. The constant stellar-mass-to-light ratios allow us to write
the covariance matrix using the E = log M variable instead of absolute magnitude
or the logarithm of the luminosity L.

We used the data of the z band to minimize stellar effects, since it is the redder
available in SDSS. Also we present in this work test analyses in the r band for which we
have obtained very close results. Defining E = log M*" we have that mass is related

with magnitudes as follows (Kauffmann et al., 2003b):

M*—QZ—M@

E =5, 2.5

(6.11)

where S, = log% and @z is a redshift correction. Q and S, is taken from Kauffmann
et al. (2003b). Mg is the solar magnitude for the specific band, needed because S, is
normalized in solar units. We took it from Blanton et al. (2003). Once we get the median
mass for SDSS ellipticals in z and r band, we also derived the correspondent covariance
matrix for the new three parameter space for SDSS data: stellar mass, effective radius
and velocity dispersion. Means, dispersions and correlations are given in table 6.2,
where R = logR., V = logoy and F is the logarithm of stellar mass calculated above.
The last step before comparing the ELO samples with the SDSS data is to take into
account that they have been calculated using a different Hubble constant. Radii and
masses of our virtual ellipticals are in h = 0.65 and early-types of SDSS are in h = 0.70.
We choose to move masses and distances of ELOs to h = 0.70 better than SDSS data
because mass-to-light ratios were also obtained with the assumption of h = 0.70.
Figure 6.8 plots the xY versus P (top) and kD versus kP (bottom) diagrams for
ELOs in both the FA-Z0 and EB-Z0 samples. We also drew the 20 concentration
ellipses in the respective variables, as well as its major and minor axes, for the SDSS

early-type galaxy sample in the SDSS z band (solid lines) and in the r band (point
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Band used E R 1% OF OR oy PER PEV PVR
r 10,9 049 2.2 0.3509 0.241 0.111 0.8454 0.7419 0.543
7 10.81 0.45 2.2 0.3525 0.241 0.11 0.8486 0.7499 0.543

Table 6.2: Maximum likelihood estimates of the joint distribution of masses, sizes and
velocity dispersions for SDSS early-type sample (Bernardi et al., 2003a,b,c,d). Masses
are given in log My, distances in log kpc, velocity dispersions in logkm x s~!. The
Hubble constant used in the SDSS is h = 70.

lines) as analyzed by Bernardi et al. (2003b,c). The most outstanding feature of this
Figure (upper panel) is the good scaling behavior of H3D versus kP, with a very low
scatter (see the slopes M; in Table 6.3). Note that the slopes for the FA-Z0 and EB-
70 samples are consistent within their errors, while the zero-points depend on the SF
parameterization through the ELO sizes. The values of the slopes in Table 6.3 mean
that systematic variations of the structural and dynamical properties of ELOs with the
mass scale cause, by themselves, a tilt of the dynamical FP relative to the virial relation.
This confirms that the Fundamental Plane is the observed manifestation of the Intrinsic
Dynamical Plane introduced in previous Section. In Table 6.3 we also present the value
of this slope for the EA-STAR-Z0 sample showing that it is very similar as the FA-ZO
slope. EA-STAR-Z0 sample is a larger sample and more representative of a real one
because it includes ELOs that are not isolated up to the halo scale (see Section 4.4.1).
The FA-STAR-ZO sample in k space can be seen in Figure 6.27. We would deepen into
the tilt and the scatter of the dynamical FP below (see 6.2.4 and 6.2.5 respectively).

Another interesting feature of Figure 6.8 is that it shows that most of the values of the
D

k; coefficients are within the 20 concentration ellipses in both plots for ELOs formed in
FEA-70 type simulations, with a slightly worse agreement for ELOs in the FB-Z0 sample.
This means that ELOs have counterparts in the real world (Séiz et al., 2004). Finally, we
note that either the dynamical or the observed FPs are not homogeneously populated:
both SDSS ellipticals and ELOs occupy only a region within these planes (see Figure 6.8
lower panel, see also, Guzman et al., 1993; Marquez et al., 2000). This means that, from
the point of view of their structure and dynamics, ELOs are a two-parameter family
where the two parameters are not fully independent. Moreover, concerning ELOs, the
occupied region changes when the SF parameters change. The reason of this change
is that the ELO sizes decrease as SF becomes more difficult, because the amount of
dissipation experienced by the stellar component along ELO assembly increases (see
discussion in Section 9.2).

In figure 6.9 ELO samples and SDSS (z and r band) are shown in a mass, radius
and velocity dispersion coordinate system (Sdiz et al., 2004). These are more familiar
variables, and it is maybe better for a first comparison with SDSS data. Error bars

in ELOs variables account for the dispersion between the 100 projection values we are
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Figure 6.8: Dynamical Fundamental Plane in x” system. Edge-on projection (top
panel) and nearly face-on projection (bottom panel) of the dynamical FP of ELOs in
the s variables (red filled symbols: EA-Z0 sample; blue open symbols: EB-Z0 sample).
We also draw the respective concentration ellipses (with their major and minor axes)
for the SDSS early-type galaxy sample from Bernardi et al. (2003b) in the z band (solid
line) and the r band (dashed line). Error bars account for projection effects. See text
for more details.

using (see Section 4.5.3). From these figures, we can see the advantages of using a
kappa space, in which from projections of two coordinates we can obtain much more
information. Finally in Figure 6.10 we show that the central l.o.s. velocity dispersion,
afg;%, is a fair empirical estimator of the virial mass, M,;.. This is a very important
result because relates very strongly two quantities of very different scales and it does not
depend on the star formation parameters. The EA-STAR-ZO sample in mass, radius

and velocity dispersion space can be seen in Figure 6.28
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Figure 6.10: The correlation between the central l.o.s. velocity dispersion and the virial
mass for the ELO samples. Symbols are as in previous Figures. Error bars account for
projection effects.
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6.2.4 The Origin of the Tilt of the Fundamental Plane

We now address the issue of the physical origin of the tilt of ELO IDPs relative to
the virial relation. As discussed in Section 3.2, a non-zero tilt can be caused by a

mass dependence of the mass-to-light ratio Myi,/L, of the mass structure coefficients

VlI‘ — GM vir

= star \2 btar)
M 3(o-los 0) R

i) We first note that the mass-to-light ratio can be written as:

or of both of them. We examine briefly these possibilities in turn.

Mvir/L = Avir(MStar)'va X ,ystar (612)

where 75" = M /[ is the stellar mass-to-light ratio, that, as already explained,
can be considered to be independent of the E galaxy luminosity or ELO mass scale.
Figure 6.5 and the values of the i slopes given in Table 6.3, indicate that the dark
to bright mass content of ELOs increases with their mass, contributing a tilt to their
IDPs. Similar results have also been found in pre-prepared simulations of dissipative
mergers (Robertson et al., 2006). Note that we have already seen that M CS}t,ﬁ)O o Mtar
(see Section 4.5).

ii) Writing the c}I' mass structure coefficients as power laws c{if = Ayj(Mgtar)fnm
ELO homology would imply Sy = 0. To elucidate whether or not this is the case, the
B slopes have been measured on the ELO samples through direct fits in log-log scales.
The results are given in Table 6.3, where we see that the homology is in fact broken both
for FA-Z0 or EB-7Z0 samples. To deepen into the causes of this behavior, we remember

here Equation 3.8:

AT = X 6 X ey, (6.13)

Furthermore, from the definitions of the ¢, and ¢, coefficients (Equations 3.6 and
3.7), we note that both coefficients can be split into two terms, making our analysis
clearer. First, one addressing the dissipation and gas cooling effect, this is, the change
from the halo scale parameters that take into account the total matter, to the baryonic
object scale parameters that includes only stars. The second one takes into account
the projection, geometrical and concentration effects, indicating the change from the
3D baryonic scale parameters to the projected baryonic scale parameters which are the

ones observed. So, we rewrite the velocity term as:

Cy = Cyd X Cype (6.14)
with
cva = (0350 (o) (6.15)

and

cvpe = (0500)%/3(01580)° (6.16)



6.2 Fundamental Parameters: The Fundamental Plane 129

And for the size coefficient, we can write

Cr = Gd X Crp (6.17)
where
e = 188135 (6.18)
and
Crp = Torbo/ Rerbo (6.19)

Finally, using these new definitions we have that,
cﬁr = Cf X Crd X Crp X Cyd X Cype, (6.20)

So these parameters have to explain the slope (Sy # 0) observed for the homology

coefficient, c%r. Taking into account the power-law forms of these coefficients, we have:

ﬂM = BF + 5rd + Brp + /Bvd + 5Vp07 (6'21)

when the f; slopes are calculated through direct fits.

First of all, we have already seen in Section 6.2.1 (Figure 6.3 and Table 6.3) that
the ¢t coefficient is independent of the ELO mass scale or SF parameter values and that
ELOs satisfy the virial theorem at the halo scale. Consequently we have to study the
two other coefficients and dilucidate which of them are relevant to explain the tilt of
the Fundamental Plane.

Concerning sizes, in Figure 6.11 we plot the ¢,q = rg’ﬁ / rsz;‘g
mass scale for ELOs in both the FA-Z0 and the EFB-Z0 samples. In this Figure the

effects of SF parameterization are clear: FA-Z0 type ELOs have larger sizes relative

ratios versus the MFtr

to the halo size than EB-Z0 type ELOs. There is also a clear mass effect, with more
massive ELOs less concentrated relative to the total mass distribution than less massive
ones (i.e., spatial homology breaking; note, however that the scatter is important).
Moreover, Figure 6.11 suggests that this trend does not significantly depend on the
SF parameterization. These indications are quantitatively confirmed through a fit to
a power law c;q = Ayq(M:% )P (see Table 6.3) and have interesting implications to
explain the tilt of the observed FP.

Now, let us move to the observationally relevant scale lengths, the projected half-

T

0 sta.
mass radii Re,bo

. Their correlations with their intrinsic three dimensional counterparts

star

re,bo

are very good, as illustrated in Figure 6.12, where the very low dispersion in the

plots of the ¢;p = 7500 /RS ratios versus the stellar mass M can be appreciated.

The results of a fit to a power law of the form ¢, = A,p (M)A are given in Table
6.3 where we see that the ¢, ratios show a very mild mass dependence in the EA-Z0

sample and none in the FB-7Z0 sample. In Table 6.3 we also present the value of this
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Figure 6.11: The ¢,q = rgoﬁ / thgg ratios as a function of the ELO mass scale. Symbols

are as in previous Figures. Spatial homology breaking is clear in this Figure.

slope for the EA-STAR-Z0 sample? obtaining same conclusions as with the FA-Z0 and
EB-70 samples. This result is important because it indicates that the observationally

available projected radii thf;‘g are robust estimators of the physically meaningful size

star
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Figure 6.12: The ¢;p = r%% /RS ratios versus the stellar masses at the baryonic object

scale. Symbols are as in previous Figures. Error bars account for projection effects.

Next we study the velocity coefficients. In Figure 6.13 we plot the cyq = (019 /o5%r )2

ratios, that measure how dissipation and concentration affect, on average, to the rela-

tive values of the dispersion at the halo scale (involving also dark matter) and at the

2EA-STAR-Z0 sample is a larger sample and more representative of a real one because it includes
ELOs that are not isolated up to the halo scale (see Section 4.4.1).
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baryonic object scale. No mass effects are apparent in this Figure, but an average
kinematical segregation is clear, (see Table 6.3 for the results of a fit to the expres-
sion cyq = Ayg(ME)Pva). These are important results, which could have interesting

observational implications.
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Figure 6.13: The cyq = (035 /o5t )2 ratios (average kinematical segregation) as a func-
tion of the ELO mass scale. Symbols are as in previous Figures. No dynamically
broken homology can be seen in this Figure, but the kinematical segregation between
dark matter and stars is clear.

In Figure 6.14 we plot the cype = (050)?/3(07ac},)? ratios versus the ELO mass
scale. We see that a significant mass effect is not apparent, and this is quantitatively
confirmed in Table 6.3, where the results of a fit of the form cypc = AVpC(M}iEf““)ﬂVI’C are
given. We also see that due to radial anisotropy, ¢ype < 1, with no SF parameterization
effect. In Table 6.3 we also present the value of this slope for the EA-STAR-Z0 sample?
obtaining same conclusions as with the FA-Z0 and EB-Z0 samples. So, there is not
mass bias when using alsgs'ﬁ) as an estimator for agfgf), but some warnings are in order
concerning anisotropy effects.

To sum up, we see that, irrespective of the SF parameterization, the main contribu-
tion to the homology breaking comes from the ¢,q coefficients (Guzman et al., 1993, i.e.,
spatial homology breaking, see), while 5,4 have values consistent with ¢; and c¢yq being
independent of the ELO mass scale, i.e., no dynamical homology breaking. ¢, and cypc
show a very mild mass dependence in the FA-Z0 sample and none in the EB-Z0 sample,
indicating that projection effects are not important in our ELO samples.

To estimate the contributions of projection effects, we built 40 new samples from
FEA-70 (EA-TEST1) and other 40 from EB-Z0 (EB-TEST1), taking the same number

3 EA-STAR-Z0 sample is a larger sample and more representative of a real one because it includes
ELOs that are not isolated up to the halo scale (see Section 4.4.1).
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Figure 6.14: cype = (05%27)%/3(0t20)2 ratios versus the ELO mass scale. Symbols are
as in previous Figures. Error bars account for projection effects.

of objects but randomly choosing for each object one of the one hundred projections.
For all the samples the same analysis made for FA-Z0 and EB-Z0 has been repeated,
obtaining the same results as before. In column 2 of Table 6.4 two of these analyses
are presented. As we can see the differences do not change the conclusions obtained
before, although the errors clearly increase. A larger sample is built taking the whole
one hundred projections for each ELO. Columns 3 and 4 of Table 6.4 show results for
FA-70 sample (FA-TEST2) and for EB-Z0 (EB-TEST2), respectively. Results of these
tests confirm our previous conclusions. These are that at least half of the tilt of the
fundamental plane has its physical origin in that mass fraction of stars bound to the
ELOs (similar results when using cold baryons) relative to the virial mass, decrease
with the mass scale. The physical origin of the other part can be explained in terms
of homology breaking, particularly from characteristics lengths between halo scale and
ELO scale. The characteristic length at ELO scale, rzfﬁg, relative to the characteristic
distance at halo scale, ;- is not constant for all ELOs, it increases for more massive
ELOs. These trends are due to a systematic decrease with increasing ELLO mass, of the
relative amount of dissipation experienced by the baryonic mass component along ELO

formation.

6.2.5 The Scatter of the Fundamental Plane

We now turn to consider the scatter of the dynamical FP for the ELO samples and
compare it with the scatter of the FP for the SDSS elliptical sample, calculated as
the square root of the smallest eigenvalue of the 3x3 covariance matrix in the E (or
log L), V = log o2}y and R = log Ry variables (Saglia et al., 2001). As Figure 6.8

suggests, when projection effects are circumvented by taking averages over different
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EA-70 EB-70 EA-STAR-Z0
M; 0238 +0.039 0.277 £ 0.059 0.264 + 0.024
Beir  0.221 4+ 0.083  0.237 + 0.158 -
Bv -0.162 £ 0.140 -0.167 + 0.288 -
Be 0.048 & 0.040 -0.007 £ 0.072 -
Bya  0.000 & 0.037  0.000 £ 0.113 -
Bupe 0.012 +0.033  0.069 & 0.109  0.006 + 0.038
Bea  -0.231 £ 0.146 -0.247 + 0.266 -
Brp  0.011 +0.012  0.026 & 0.021  0.022 + 0.014

Table 6.3: Slopes for Linear Fits. Column 2: the slopes of the /<c3D = M kP + My relation
(direct fits); the slopes of the My /MStar oc (MEtar)frmeir and ¢ oc (ME0)5 scaling
relations for the FA-Z0 sample, calculated in log — log plots through direct fits. Errors
stand for their respective 95% confidence intervals obtained using Student distribution.
Columns 3: same as columns 2 for the FB-Z0 sample. Columns 3: same as columns 2
for the FA-STAR-Z0 sample. In this case only slopes at the baryonic object scale can
be calculated.

| Parameter ~ EA-TEST1 EB-TEST1 FEA-TEST?2 EB-TEST2 |
M, 0.286 + 0.054 0.297 + 0.071  0.256 £ 0.005 0.293 + 0.007
B -0.267 + 0.186 -0.184 4+ 0.305 -0.155 &+ 0.016 -0.166 + 0.028
Bupe -0.013 £ 0.090 0.032 + 0.092 0.017 £ 0.015 0.064 £+ 0.019
Brp 0.023 £+ 0.053  0.007 £ 0.089  0.010 £ 0.004  0.023 £ 0.009

Table 6.4: Slopes for linear fits FA-Z0 and EB-Z0 test samples relating projection
effects. Column 2: the slopes of the k7 = M; kP + Mj relation (direct fits); the slopes of
the ¢ (Mggar)ﬁi scaling relations for the FA-Z0 sample, calculated in log — log plots
through direct fits. Errors stand for their respective 95% confidence intervals. Column
3: the same slopes as column 2 for a random projection of FB-Z0 sample. Column 4:
the same slopes as column 2 for a sample built with all the projections for each ELO of
the FA-Z0 sample. Column 5: same as column 4 for EB-Z0. See text for details.
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Parameter EA-70 EB-70 EA-STAR-Z0
OEVR 0.0183 0.0178 0.0224
FA-TEST1 EB-TEST1 FEA-TEST2 EB-TEST?2
OEVR 0.0361 0.0288 0.0339 0.0297
SDSS z band r band
OLVR 0.0489 0.052

Table 6.5: Scatter of the Fundamental Plane for the different samples and for different
bands of the SDSS early-type sample (Bernardi et al., 2003c).

directions, the resulting three dimensional orthogonal scatter for ELOs is smaller than
for SDSS ellipticals: ogyr = 0.0164 and ogygr = 0.0167 for the FA-Z0 and EB-Z0
samples, respectively, to be compared with oryr = 0.0489 for the SDSS z band in the
log L,V =logop and R = log RUEM variables (see Table 6.5). We also present in this
table the scatter of the dynamical FP for the FA-STAR-Z0 sample showing that it is also
smaller than for the SDSS ellipticals. This is a larger sample and more representative
of a real one because it includes ELOs that are not isolated up to the halo scale (see
Section 4.4.1).

To estimate the contribution of projection effects to the observed scatter, we have
used the TEST1 and TEST2 samples mentioned above. First we have calculated the
scatter for FA-Z0 and FB-Z70 ELOs building a sample using just one random projection
for each virtual elliptical (TEST1). We have also calculated the orthogonal scatter for
ELOs when no averages over projection directions for the thﬁg and afﬁ% variables are
made (TEST2). In both cases, and for both SF parameterizations, the scatter increases
(see Table 6.5), but it is still lower than observed. This indicates that a contribution
from stellar population effects is needed to explain the scatter of the observed FP, as
suggested by different authors (see, for example, Pahre et al., 1998; Trujillo et al., 2004;
Hyde & Bernardi, 2008b).
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6.3 The Photometric Plane

In the last years a great interest has arisen for the good correlations between the shape
parameter, n, obtained from the surface brightness profiles of galaxies and all the other
structural and kinematic fundamental parameters (see discussion in Section 3.2.2). We
have already seen in section 5.2.6 that our ELOs are also well described by a Sérsic law.
Now we will focus on the different relations between these fundamental parameters.

First of all we want to notice that the values obtained are in good agreement with
observation (Caon et al., 1993; Prugniel & Simien, 1997; Graham, 1998; Marquez et al.,
2000; D’Onofrio, 2001; Trujillo et al., 2001; Vazdekis et al., 2004; Graham et al., 2006),
including their correlations with the effective radii Rleight and velocity dispersion, as
illustrated in Figures 6.15(a) and 6.15(b). In Figure 6.15(a) we plot the shape parameter
n versus the ELO projected stellar half-mass radii, RZfafj, defined by the condition that
M s;?r(RZtﬁg) encloses half the total stellar mass of the system; assuming that v does
not depend on R, we will have thgg o~ Rgght. Green triangles are data on n and

Jeht from D’Onofrio (2001). Note that a slight effect resulting from the different SF
parameterization in FA-Z0 and FB-Z0 samples is apparent in this plot, mainly due
to the smaller sizes of EB-Z0 sample ELOs as compared with their EA-Z0 sample
counterparts. Figure 6.15(b) shows the central l.o.s. velocity dispersion, afggro, versus
the shape parameter, n obtained from the Sérsic fits. Filled red circles stand for the FA-
70 ELO sample and empty blue circles for the FB-Z0 sample. Green triangles stand for
Vazdekis et al. (2004). The good correlation between the shape parameter n and other
structural or kinematic parameters indicate a break of the structural homology of ELOs,
that is, mass density profiles of ELOs varies according with their mass: more massive
galaxies are more centrally concentrated that less massive ones. This consolidates similar
conclusions obtained in previous section.

The Photometric Plane relation relates the Rleight, te and m observational param-
eters (see Section 3.2.2.2). Following the same idea that we used when we studied
the projected stellar mass density profiles (see section 4.5.3), we define an analogous
relation for our elliptical-like objects, the Structural Photometric Plane (SPhoP) as:
log RYfr = Alogn + Blog My + C, i.e., replacing the surface brightness with the
stellar mass. We have calculated the orthogonal least square fit of this equation for
the EA-Z0 sample obtaining: AL = —0.30186; BE!! = 0.87653; CLs = —9.86211
and an orthogonal dispersion, JEﬁM,zO = 0.0556. For the EFB-Z0 sample we obtained:
AP = 0.25221; BEP = 0.724734; C4P = —7.807486 and o/F), ., = 0.0633. In Fig-
ure 6.16, we plot the edge-on projection of this plane for the FA-Z0 and EB-Z0 samples.
In Table 6.6 we present the different parameters that define the SPhoP for the FA-Z0,
EB-70 and EA-STAR-Z0 samples. As expected the SPhoP obtained for the FA-STAR-

70 sample % is very similar as the one obtained for the EA-Z0. Present results show

4EA-STAR-Z0 sample is a larger sample and more representative of a real one because it includes
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Figure 6.15: Fig. 6.15(a): The Sérsic shape parameter, n, versus the projected stellar
half-mass radii, Re, for EA-Z0 sample (red filled circles) and EB-Z0 sample (blue open
circles). For each ELO, the mean of projections along one hundred random directions
are shown. Error bars stand for the dispersion generated just by projection effects.
Green filled triangles are data on n and Ree™ from D’Onofrio (2001). Fig. 6.15(b): The

central l.o.s. velocity dispersion, of**, versus the shape parameter obtained from the

Sérsic fits. Filled red circles stand for the EA-Z0 ELO sample and empty blue circles
for the EB-Z0 sample. Green triangles stand for Vazdekis et al. (2004) local galaxies
data.

that the Photometric Plane could be an interesting alternative tool for the study of
elliptical galaxies at high redshifts instead of the Fundamental Plane, which requires a
heavy amount of time for measuring velocity dispersions.

We have confirmed observational results (Khosroshahi et al., 2000; Graham, 2002)
that indicate that the logarithms of n, thﬁfj and M(f;j‘ﬁw populate, at z = 0 a flattened
ellipsoid close to a two-dimensional plane (the SPhoP). We have checked that we obtain
the same results either when we use the thﬁg and Mcs}t,?ﬁoo terms obtained from the
Sérsic fits or those obtained directly from the projected mass profiles.

6.3.1 The Hyperplane in 4D

To explain this tight correlation among three parameters some authors have suggested
that the observational parameters n, Rgght, < I8 > and o( form a Hyperplane in
4D (Graham, 2002; Capozziello et al., 2007, see Section 3.2.2 for more details). In
this scenario the Photometric Plane and the Fundamental Plane would be just two
projections of this hyperplane. Since we have already confirmed that our samples of

elliptical-like objects satisfy the Fundamental and Photometric Plane relations, we want

ELOs that are not isolated up to the halo scale (see Section 4.4.1).
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Figure 6.16: The Structural Photometric Plane at z = 0. Filled red circles stand for the
EA-70 ELO sample and empty blue circles for the FB-Z0 sample. Error bars account
for projection effects.

to explore this possibility.

We have made a Principal Component Analysis (PCA) between the different pa-
rameters involved in these relations and compared the orthogonal dispersion obtained
for each one. We have done this for the szgg—M s;ﬂ) , relation, the Dynamical Plane, the
Structural Plane and the Hyperplane in 4D. Also in order to check for the importance
of projection effects we have done two things. First, we have built random samples of
elliptical-like objects, this is, using just one random line-of-sight projection for each ob-
ject instead of the mean value over one hundred. Second, we have extended this study
to the 3D counterparts of all these relations. In the case of the Fundamental Plane we
have used the 3D quantities already discussed in Section 6.2, rifﬁ‘g, agfﬁro and MS%" that
form the Intrinsic Dynamical Plane (IDP). Our analogous of the Photometric Plane in
3D, the Intrinsic Structural Plane (ISP), have been built using the p term obtained
from the fits of the Einasto equation (see Equation 4.11) to the 3D star mass density
profiles of our simulated ellipticals presented in Section 5.2. As well as for the Struc-
tural Photometric Plane, we have found similar results using the characteristic radius
and mass obtained from the fits or those obtained directly from the mass profiles. The

orthogonal dispersion for each relation can be seen in Table 6.7.

From these numbers we can obtain several interesting remarks. First of all, we
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[ Sample # A4 BFA CEA ¥ X2 A3 gIFE ]
EA-70 26 -0.30186 0.87653 -9.86211 0.12992 0.010797 0.003091 0.0556
EB-70 17 0.25221  0.72473 -7.80749 0.08067 0.008392 0.004006 0.0633

EA-STAR-Z0 56 -0.20651 0.84024 -8.51504 0.16439 0.014430 0.004547 0.0674

Table 6.6: Principal component analysis of mass, radius and dispersion velocity for FA-
70, EB-70 and EA-STAR-Z0 samples. Column 2: number of objects in the sample.
Columns 3, 4 and 5: coeflicients of Equation 8.2 at each z. Columns 6, 7 and 8: eigen-
values of the correlation matrix. Columns 9: rms orthogonal scatter of the photometric
plane at each z.

| Mass-Radius ~ Fundamental Plane  Photometric Plane Hyperplane in 4D
2D
REE, Mo Kot Moo, oito Koty Miiporn oty Miioo, oo, 1

oo dom 0.0625 0.0276 0.0580 0.0292

oot 0.0592 0.0194 0.0556 0.0193
3D

O O oD s A VD ¥ TR O 0 Vi
o°* 0.0617 0.0145 0.0533 0.0144

Table 6.7: r.m.s. orthogonal scatter for the different relations between structural and
kinematic parameters studied in our samples.

confirm that the Photometric Plane shows a slightly tighter correlation that the one
obtained from the mass-radius relation. This is especially true for the random sample
that is supposed to be closer to a real observational sample. We can also see that for all
the possible combinations the Fundamental Plane shows a stronger correlation than the
Photometric Plane and a great improvement relative to the radius-mass relation. Finally
the Hyperplane in 4D presents the same dispersion as the Fundamental Plane. This
indicates that we are not adding more information to this relation when we introduce the
shape parameter n. However it is clear that we are not introducing a random variable
either because this would make the orthogonal dispersion to increase. So, these results
seem to indicate that although the shape parameter, n (or p for the 3D profile), is very
tightly correlated with all the parameters involved in the Fundamental Plane, it may

not add any physical information to this relation.

In this sense, we have found that the Fundamental Plane and the Photometric
Plane are not projections of a Hyperplane in 4D. It would be interesting to see what
happens when the projection effects are circumvented in observations. Either because
the statistical number of ellipticals in the Photometric Plane studies increase, or because
the deprojection techniques evolve enough to get reliable predictions of the 3D structure
of the galaxies. In both cases our results give a prediction of what could be found.
Anyway, up to that moment the Photometric Plane seems to be a very powerful tool

both for theoreticians and observers. This is especially true taking into account the
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observational low cost of obtaining the shape parameter, n comparing with obtaining

ago.

6.4 Stellar Population Properties

The final step in the analysis of virtual elliptical samples at redshift z = 0 is presented
in this section. We have studied the stellar population properties of our ELOs and
compare them with observational results. We have already discussed that elliptical
galaxies present age effects with mass and that these effects link elliptical dynamical
properties with the characteristics of their stellar population (see Section 3.3). To
quantify these effects in our ELO samples, the global mean age, t of their stellar mass,
Mﬁg‘“, have been calculated. In addition, we have measured the percentiles of ELO
stellar age distributions, ¢, at which the fraction f% of the stellar mass at z = 0, MS",
was already formed. We have done it for f = 10,50,75,90. We have considered the
difference At = t75 — t19 as an estimation of the global width or timescale for ELO star
formation.

We have found that for any f a trend exists with M. The observational age

effects with Ufgsro arise because, as we have already seen above (Section 6.2.3), Mi;,

and olscfgro are on their turn tightly correlated, making afgg"ro an empirical virial mass
estimator. As an illustration of these trends, in Figure 6.17 (upper panel) we plot the
mean age versus Uiﬁ?}b for the FA-Z0 and EB-Z0 samples and verify that they compare
adequately well with relative mean age determinations through population synthesis
modeling for Es obtained by Thomas et al. (2005). Lower panel of Figure 6.17 shows
that observational width determinations from synthesis models (Thomas et al., 2002,
2005) are consistent with ELO widths. Therefore we see that, as for observational data,
more massive ELOs have older mean ages and narrower spreads in the distributions of
their stellar populations (downsizing). Note that these trends are independent of the
particular details of the SF implementation, although their zero-point seems to depend.
This result points to a contribution of purely dynamical effect with a cosmological origin
for these trends, and plays a very important role in the development of the elliptical

galaxy formation and evolution scenario (see Chapter 9).
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Figure 6.17: Upper panel: Mean age of the stellar population of our simulated ellipti-
cals. Full green line is the observational fit obtained by Thomas et al. (2005) for high
density environments. Dashed lines shows the error of this fit just taking into account
errors in the age estimation. Lower panel: The width of the stellar population age
distribution from our ELO samples compare with the one obtained from observations
trough synthesis models (Thomas et al., 2005). In both panels, red filled circles stand
for the FA-Z0 sample and blue open circles for the EB-Z0 sample. Error bars account
for projection effects.
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6.5 Robustness of Results and Beyond: Test Samples

In order to test the robustness of our results we have run a set of test simulations and
built their corresponding ELO samples (see Section 4.2 and 4.4). In this Section we
will discuss whether or not, slight changes in the cosmological model (EC-Z0 sample), a
higher resolution (ED-Z0) and using a larger box size (EF'1-Z0 and EF'4-70), can affect
the different results and conclusions presented in previous sections.

We have used these samples not only to test the robustness of all our results and
conclusions but also to try to expand them. In this section we will focus on the virtual
ellipticals at z = 0 of all these runs. In the next Chapters we will discuss on the
formation and evolution scenario of these galaxies and how these test samples help to

clarify it.

6.5.1 Changes in the Cosmological Model

We want to check if slight changes in the values of the 5, Qparyon Or h parameters can
affect the general trends found in ourEA and EB samples. Specifically, we have run
the (EC) simulation with the same parameters as in EA sample but for changing the
cosmological parameters to their preferred WMAP values (Spergel et al., 2003). See
Table 4.1 and Section 4.2 for more details.

We first check whether these ELOs satisfy the Fundamental Plane relation found
in previous samples. In Figure 6.18 we plot the r-space coordinates (left panel) and
the My, /Mgtoar ratios. We have also performed the same analysis done in 6.2.4, to test
not only the Fundamental Plane by itself but, also, the origin of their tilt, i.e., the
relation between the Fundamental Parameters at different scales. To perform this test
we replaced ELOs of one of the simulation of the FA-Z0 sample with ELOs identified in
EC-Z0 simulation. Results of the fits are shown in Table 6.8 and 6.9 and indicate that
there is no statistical difference between these two sets of ELOs. We can also see that
these new ELOs seem to be less massive than the EA-Z0 sample. Although this could
be true due to the change of the global cosmological parameters €, and 2, to a lower
value, in our case, this effect has more to do with the fact that the three more massive
objects in the EC-Z0 sample are merging and cannot be included in the sample. This
fact reduces the range of masses that can be studied with this simulation.

In Figure 6.19 we can appreciated other structural parameters that confirm that
the ELOs of this simulation not only satisfy all the scaling relations found for the EA
sample, but also that the zero-point of these trends do not really differ between both
runs.

Finally, another important point is that stellar population properties and the trends
found with the dynamical parameters, as olsg';ro, holds for the EC-Z0 sample. As ex-

pected, it shares the same zero point as the EA-Z0, as they both have the same star
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Figure 6.18: Robustness of results. Cosmology test I: The Fundamental Plane in kappa
space (left) and the My, /ME%" ratio versus M (right) for the EC-Z0 sample (violet
filled circles). To compare with previous results, FA-Z0 (red filled circles) and EB-Z0
(blue empty circles) samples are also shown. Error bars account for projection effects.

formation parameters (see Figure 6.20). This is a very important result because it in-

dicates that the stellar age properties are linked with star formation parameters rather

than with changes in the cosmological parameters: Qa, Qu, Qp and h.
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Figure 6.19: Robustness of results. Cosmology test II: Different structural parameters
for the EC-Z0 sample (violet filled circles) that characterize their profiles. The dark-
over-total mass ratio (upper left), gradients of the projected mass profiles (upper left),
the total density profile slope obtained from fitting p™*(r) r=7 (lower left) and the
shape parameter n versus Mﬁf)ar. To compare with previous results, FA-Z0 (red filled
circles) and EB-Z0 (blue empty circles) samples are also shown. Error bars account for
projection effects.
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Figure 6.20: Robustness of results. Cosmology test III: Upper panel: Mean age of the
stellar population of our simulated ellipticals. Full green line is the observational fit
obtained by Thomas et al. (2005) for high density environments. Dashed lines shows
the error of this fit just taking into account errors in the age estimation. Lower panel:
The width of the stellar population age distribution from our ELO samples compare
with the one obtained from observations trough synthesis models (Thomas et al., 2005).
In both panels, red filled circles stand for the EA-Z0 sample, blue open circles for the
EB-70 sample and violet filled circles for the EC-Z0 sample. Error bars account for
projection effects.



6.5 Robustness of Results and Beyond: Test Samples 145

6.5.2 DPossible Resolution Effects

To test whether or not the resolution of our simulations can affect our conclusions, we
have checked if the simulated ellipticals of a higher resolution simulation follow the same
trends found for the EA-Z0 sample. We have used a ED simulation (S7714) with the
same parameters as in the EA simulations but with more 2 x 1282 particles and a higher
softening length (e = 0.00075). See Table 4.1 and Section 4.2 for more details.

Figure 6.21 shows the FP in kappa coordinates (see Equations 6.5-6.7) and confirms
that this relation holds for the new sample, with the same tilt and zero point those of
the FA-7Z0 sample. To check whether this is true for the different relations at halo and
baryonic scale we have performed the same statistical study of the tilt and scatter of
the Fundamental Plane, done in the cosmological test, for the EC-Z0 sample. Column
two of Tables 6.8 and 6.9 present these results. Figure 6.22 shows also another set of
structural parameters that define the dark matter, stellar and total mass distribution.
In all of them we see no remarkable differences between the higher resolution sample
and the FA-Z0 one.
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Figure 6.21: Robustness of results. Resolution test I: The Fundamental Plane in kappa
space (left) and the My /M ratio versus M (right) for the ED-Z0 sample (cyan
filled pentagons). To compare with previous results, FA-Z0 (red filled) and EB-Z0 (blue
empty) samples are also shown. Error bars account for projection effects.

In these Figures we can see that the simulated ellipticals resulting from a higher
resolution confirm all our previous conclusions. Moreover it seems that they also hold
for ellipticals of masses lower than the ones we reached in the FA and EB samples.

Otherwise, Figures 5.19 and 5.20 show that two-body relaxation effects (typically the
most stringent requirement for convergence) have not been important at least for r larger
than ~ 1 kpc. In fact, two-body relaxation effects cause energy equipartition. But the

values of the 0§ (r) /o &k (1) ratios we have obtained (~~ 0.8) exclude energy equiparti-
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Figure 6.22: Robustness of results. Resolution test II: Different structural parameters
for the ED-Z0 sample (cyan filled pentagons) that characterize their profiles. The dark-
over-total mass ratio (left), gradients of the projected mass profiles (center) and the
total density profile slope obtained from fitting p**(r) =7 (right). To compare with
previous results, FA-Z0 (red filled circles) and EB-Z0 (blue empty circles) samples are
also shown. Error bars account for projection effects.

tion among dark matter and stellar particles in ELOs, because such equipartition would
demand o3iar () /odak (r) = [mdark /mstar] % — 9 194, where mdark = 1.29 x 108My, and
mst = 2.67 x 10'M, are the mass of dark and stellar particles, respectively. This
result is important because it shows that two-body relaxation effects have played no
important role in the gravitational interaction.

Concerning age stellar population in Figure 6.23 we plot the mean and width of the
stellar age distribution of the ED-Z0 sample. We found that this sample presents the

same trends found in FA-Z0 y EB-Z0 and shares the zero-point with the first one.
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Figure 6.23: Robustness of results. Resolution test III: Upper panel: Mean age of the
stellar population of our simulated ellipticals. Full green line is the observational fit
obtained by Thomas et al. (2005) for high density environments. Dashed lines shows
the error of this fit just taking into account errors in the age estimation. Lower panel:
The width of the stellar population age distribution from our ELO samples compare
with the one obtained from observations trough synthesis models (Thomas et al., 2005).
In both panels, red filled circles stand for the EA-Z0 sample, blue open circles for the
EB-70 sample and cyan filled pentagons for the EFD-Z0 sample. Error bars account for
projection effects.
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6.5.3 Box Size Effects

To make sure that the results we report in this study are not unstable under changes in
the box size of the simulations, we have run several new ones with 8 times and 512 times
the volume of the FA and EB runs, i.e. Ly, = 20 Mpc and Ly, = 80 respectively
(EF1-2 and EF3 runs). We have also increased the number of particles by the same
factor to obtain identical physical resolution. See Table 4.1 and Section 4.2 for the
details on their implementation. Again, have used different strong correlations found in

EA samples to check our results.

6.5.3.1 Ly, = 20 Mpc

Figure 6.24 shows the Fundamental Plane projections in kappa coordinates and the
M /M ratio for the virtual ellipticals of EF1-Z0 simulation (orange circles) and the
EA-70 and EB-Z0 sample (red and blue respectively). We have performed a statistical
analysis as the one made in Section 6.2.4 to study the origin of the tilt of the Funda-
mental Plane. Results of these statistical analyses can be found in Tables 6.8 and 6.9.
From all this data it seems that the EF1-Z0 sample follows exactly the same trends
found for the FB-Z0 sample rather than that found for the EA-Z0 sample, even if the
star formation parameters of the EF1 run are the same as this last one. This can be
due to the different gravitational softening parameter, €, employed in this simulation,
as it is a bit higher than the EA and EB runs.
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Figure 6.24: Robustness of results. Box size test I: Ly = 20 Mpc. The Fundamental
Plane in kappa space (left) and the My, /M ratio versus M (right) for the EF1-
Z0 sample (orange filled circles). To compare with previous results FA-Z0 (red filled
symbols) and EB-Z0 (blue empty symbols) samples are also shown. Error bars account
for projection effects.

In Figure 6.25 we plot a set of different parameters that define the dark matter,
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stellar and total mass distribution of the EFF'1-Z0 sample. These plots confirm the idea
that the EF1-Z0 sample is much more similar to the FB-Z0 than to EA-Z0, and that,

in any case, all the conclusions discussed above hold for this new sample.
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Figure 6.25: Robustness of results. Box size test II: Ly, = 20 Mpc. Different structural
parameters for the FF'1-Z0 sample (orange filled squares) that characterize their profiles.
The dark-over-total mass ratio (upper left), gradients of the projected mass profiles
(upper left), the total density profile slope obtained from fitting p*t(r) =7 (lower left)
and the shape parameter n versus M>%". To compare with previous results, FA-Z0 (red
filled symbols) and EB-Z0 (blue empty symbols) samples are also shown. Error bars
account for projection effects.

Finally we have studied the stellar properties of this sample and compared them
with the FA-Z0 and EB-Z0 samples. Figure 6.26 shows the results. Again we found
that the trends with dynamical parameters are very similar to the FB-Z0. This is in
agreement with the idea, discussed above, of the origin of trends between stellar and

dynamical properties of ELOs being highly linked with a dynamical origin. The fact
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that in the test sample, ELOs of similar o data present a higher dispersion both
in the mean stellar age and in the width of the distribution is related with the larger
box side. This would allow obtaining virtual ellipticals from a wider range of different

environments and history (passive evolution, mergers, etc).
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Figure 6.26: Robustness of results. Box size test III: Lo, = 20 Mpc. Upper panel:
Mean age of the stellar population of our simulated ellipticals. Full green line is the ob-
servational fit obtained by Thomas et al. (2005) for high density environments. Dashed
lines shows the error of this fit just taking into account errors in the age estimation.
Lower panel: The width of the stellar population age distribution from our ELO sam-
ples compare with the one obtained from observations trough synthesis models (Thomas
et al., 2005). In both panels, red filled circles stand for the EA-Z0 sample, blue open
circles for the FB-7Z0 sample and orange filled squares for the EF1-Z0 sample. Error
bars account for projection effects.
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6.5.3.2 Lpox = 80 Mpc

Figure 6.27 shows the Fundamental Plane projections in kappa coordinates and the
My /M ratio for the virtual ellipticals of EF1-Z0 simulation (orange circles) and
the FA-Z0 and EB-Z0 sample (red and blue respectively). In figure 6.28 EF3 ELO
sample and SDSS (z band) are shown in a mass, radius and velocity dispersion coor-
dinate system. Although with just 11 ELOs in the EF3 sample, we have performed a
statistical analysis as the one made in Section 6.2.4 to study the origin of the tilt of the
Fundamental Plane. Results of these statistical analyses can be found in Tables 6.8 and
6.9. From all these data it seems that the EF3-Z0 sample follows the same trends found
for the FA-Z0 sample. However, concerning the origin of the tilt of the Fundamental
Plane, we obtain a clear signal from the relative content of the baryonic and the dark
mass ELO components (Syir), but not for the relative distributions (f;q4). Although this
contribution is not statistically discarded either, this result must be taken into account
at least until more statistics are available. Regarding the scatter of the Fundamental
Plane, it is important to point out that the different EF samples show just a slightly
higher scatter for the Dynamical Fundamental Plane than the smaller box samples,
even for the -STAR samples, and still thinner than the observational one. This result
indicates that stellar effects could have contributed to the scatter of the observed FP
(see Hyde & Bernardi, 2008b, for similar conclusion from recent observational results).

Finally we have studied the stellar properties of this sample and compared them
with the FA-Z0 and EB-Z0 samples. Figure 6.29 shows the results. We found that the
trends with dynamical parameters are very similar to the previous samples, sharing its
zero point with the FA-Z0 sample.

In this sense, our results concerning Ly, point to the same conclusion of Power et al.
(2003) in their convergence study of dark matter halos, i.e., the internal properties of
virialized objects do not strongly depend on the L., size. However simulations with
higher box sizes produce virtual objects with higher dispersion in the different environ-
ments and history. Therefore these simulations are more realistic and very well suited
in order to do statistical comparison with observations. On the other side, simulations
with a smaller box size can be better to isolate and study the different fundamental
physical processes that govern galaxy formation and evolution. In fact by combining
both types of them, we can study the influence of environment and history on the dif-
ferent structural and kinematical properties of ellipticals. Here we have seen that the
most important findings of our EA and EB simulations concerning the Fundamental
Plane and other relations holds for the EF samples.

Differences between EF samples are tiny. However one interesting point is the dif-
ferent total number of elliptical-like galaxies for each sample (see Section 4.4). This fact
seems to be related with two reasons. First one is related with the different environment

and history issue. In simulations with a higher og everything occurs faster and therefore,
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at redshift zero we have more elliptical-like objects well defined at the halo scale. The
other important factor in the final number of ELOs is the specific cosmological model
selected. The Qy, €2, and €2, parameters set the amount of baryonic matter that we will
have in our simulation to form our galaxies. Therefore, although with slight changes in
these values the main physical processes remain the same, these parameters determine
the mass distribution of our galaxy-like objects and as we have a fixed cut in resolution

we will have more objects as more baryonic matter is available in the simulation.
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Figure 6.27: Robustness of results. Box size test la: Lpoc = 80 Mpc. Left: The
Fundamental Plane in kappa space for the EFF3-STAR-Z0 sample (dark violet filled
squares). To compare with previous results FA-STAR-Z0 (red filled symbols) and EB-
STAR-ZO0 (blue empty symbols) samples are also shown. Right: The My, /M ratio
versus M (right) for the EF3-Z0 sample (dark violet filled squares). To compare with
previous results EA-Z0 (red filled symbols) and EB-Z0 (blue empty symbols) samples
are also shown. Error bars account for projection effects.
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Figure 6.28: Box size test Ib: Lpox = 80 Mpc: The Dynamical Plane: RZE@E,M&M
and afgzro space for the EF3-STAR-Z0 sample (dark violet filled squares). To compare
with previous results FA-STAR-Z0 (red filled symbols) and FB-STAR-Z0 (blue empty
symbols) samples are also shown. Error bars account for projection effects. We also
draw the respective concentration ellipses (with their major and minor axes) for the

SDSS early-type galaxy sample from Bernardi et al. (2003b) in the z band (solid line).
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Figure 6.29: Robustness of results. Box size test III: Ly, = 80 Mpc. Upper panel:
Mean age of the stellar population of our simulated ellipticals. Full green line is the ob-
servational fit obtained by Thomas et al. (2005) for high density environments. Dashed
lines shows the error of this fit just taking into account errors in the age estimation.
Lower panel: The width of the stellar population age distribution from our ELO sam-
ples compare with the one obtained from observations trough synthesis models (Thomas
et al., 2005). In both panels, red filled circles stand for the EA-Z0 sample, blue open
circles for the EFB-Z0 sample and dark violet filled squares for the FF'3-Z0 sample. Error
bars account for projection effects.
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Parameter EC-70 ED-70 EF1-70 EF3-70
My 0.237 + 0.044  0.267 4+ 0.040 0.225 £ 0.037  0.193 £+ 0.111
Brir 0.217 £ 0.106  0.204 £ 0.096  0.280 £ 0.088  0.345 £ 0.166
Bum -0.142 + 0.167 -0.243 4+ 0.147 -0.087 £ 0.116  0.092 + 0.249
B¢ 0.060 £ 0.048 0.066 £ 0.052  0.028 £ 0.035  0.056 £ 0.060
Bvd 0.004 £ 0.040 0.046 £ 0.061 -0.002 £ 0.032 -0.035 £ 0.072
Buvpe 0.012 £ 0.040 -0.005 £ 0.039 0.034 £ 0.040 0.086 £ 0.107
Bra -0.228 + 0.169 -0.356 4+ 0.182 -0.167 £ 0.101 -0.045 £ 0.232
Brp 0.013 £ 0.013  0.008 £ 0.013  0.023 £ 0.013  0.026 £ 0.022
Table 6.8: Slopes for linear fits at z = 0 for the different test samples. Column 1:

the slopes of the n? = Mm]l) + M relation (direct fits); the slopes of the My, /Mggar
and ¢; (Mﬁ‘éf“)ﬂi scaling relations, calculated in log — log plots through direct fits for
the cosmological test sample (EC simulation). Errors stand for their respective 95%
confidence intervals. Column 2: same as columns 1 for the higher resolution sample
(ED simulation). Column 3 and 4: same as column 1 for the larger box size samples
(EF1 and EF3 simulation). See text for details.

Parameter FEC-7Z0 FED-7Z0 FEF1-Z0 EF1-STAR-Z0 FEF3-Z0 FEF3-STAR-Z0
OEVR 0.0197 0.0180 0.0215 0.0221 0.0188 0.0262
SDSS z band r band
OLVR 0.0489  0.052

Table 6.9: Scatter of the Fundamental Plane for the different test samples and for

different bands of the SDSS early-type sample. See text for details.

3D 3D

Sample No. B T v A1 A2 A3 o vy OEry
EF1 21 11.026  0.545 2.308 0.24067 0.00409 0.00050 0.331 2.129 0.022
EF1-STAR-Z0 31 10.991 0.518 2.299 0.17578 0.00458 0.00046 0.402 1.975 0.021
FEF3-70 11 10.816 0.416 2.278 0.13238 0.00846 0.00034 0.352 1.969 0.018
EF3-STAR-Z0 22 10.774 0.418 2.259 0.10602 0.00787 0.00041 0.377 1.943 0.020

Table 6.10: Results of PCA at z = 0. Column 2: ELO number in the sample. Columns
3, 4 and 5: sample mean values of the E, r and v variables.
eigenvalues of the correlation matrix. Columns 9 and 10: coefficients of the plane (Eq.
6.1). Column 11: IDP scatter in the F, r and v variables.

Columns 6, 7 and 8:




156 Chapter 6. Ellipticals at z = 0: Fundamental Parameters
’ Sample # A;EA B;EA C’ZEA A1 Ao A3 U;’RE
EF1-70 21 -0.41220 0.79899 -8.22228 0.22673 0.014084 0.002462 0.0496
EF1-STAR-Z0 31 -0.31867 0.75837 -7.70990 0.16490 0.019999 0.002774 0.0527
EF3-70 11 -0.49447 0.80827 -8.03058 0.13885 0.027877 0.003712 0.0609
EF3-STAR-Z0 22 -0.25006 0.74982 -7.58819 0.11996 0.027059 0.005245 0.0724

Table 6.11: Principal component analysis of mass, radius and dispersion velocity for FA-
70, EB-70 and EF3 simulations. Column 2: number of objects in the sample. Columns
3, 4 and 5: coefficients of Equation 8.2 at each z. Columns 6, 7 and 8: eigenvalues of
the correlation matrix. Columns 9: rms orthogonal scatter of the photometric plane at

each z.
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6.6 Discussion and Conclusions

In this Chapter we have reported on the structural and kinematical characteristic param-
eters of a set of samples of ELOs at z = 0, formed in different cosmological simulations.
In this sense we have followed with the analysis started in the previous chapter and
deepen into the different relations that all these parameters show. Our first goal in this
Section is to check the robustness of the main results presented in the two previous

Chapters.

6.6.1 Main Results

The first step in the program of studying the origins of EGs through self-consistent
simulations, we want to ensure that our ELO samples have counterparts in the real
local Universe. Concerning this goal, in this chapter an analysis of the structural and
dynamical ELO parameters that can be constrained from observations has shown that
they are consistent with those measured in the SDSS elliptical sample (see also Saiz
et al., 2004), including the Fundamental Plane relation. We had already seen that the
projected stellar mass profile, ¥5%(R), can be adequately fitted by a Sérsic-like law
(see Section 5.2.6). In addition, we have confirmed that the shape parameter values
n we have obtained are consistent with observations, including their correlations with
the ELO luminosity (mass), size and velocity dispersion (Photometric Plane relation).
Also, ELO stellar populations have age distributions with the same trends as those
inferred from observations, i.e., most stars have formed at high z on short timescales,
and, moreover more massive objects have older means and narrower spreads in their
stellar age distributions than less massive ones (Dominguez-Tenreiro et al., 2004).

These agreements with observational data strongly suggest that the intrinsic three-
dimensional dark and bright matter mass and velocity distributions we get in our simu-
lations might also adequately describe real ellipticals. Let us now summarize the main
results obtained from the study of the different characteristic parameters that describe
the structural and kinematical properties of our virtual ellipticals.

Mass, size and velocity dispersion scales for their different components have been
measured in the ELO samples, both at the scale of their halo and at the scale of the
baryonic object (a few tens of kiloparsecs). At the halo scale, the masses of both cold
gas and stars, Mﬁb and Mﬁtar, respectively, have been found to be tightly correlated
with the halo total mass, M., with the ratios Mﬁb /Myir and M /M;, decreasing as
M, increases (that is, massive objects miss cold baryons within ry;, when compared
with less massive ELOs), presumably because gas gets more difficulties to cool and fall
as M., increases. The overall half-mass radii, rgoﬁ shows also a very tight correlation
with M. Half-mass radii for the cold baryon or stellar mass distributions have a more

complex behavior, as in these cases gas heating in shocks and energy losses due gas
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cooling are in competition to determine these distributions.

Another interesting result we have found when analyzing ELOs at the scale of the
baryonic object, is that M, plays an important role to determine the ELO structure
also below a few tens of kiloparsecs scales. In fact, both the masses of cold baryons
Mgg (i.e., those baryons that have reached the central regions of the configuration),
and of stars Mggar, show a good correlation with M, and, moreover, the Mgg /Myir
and Mf)gar /My ratios (i.e., the relative content of cold baryons or stars versus total
mass) decrease as My, increases. This is the same qualitative behavior shown by these
ratios observationally in the SDSS data, and, also, by ELOs at the halo scale. The
dependence of Mgg or M on the SF parameterization is only very slight, with EA-

70 type ELOs having slightly more stars than their EB-Z0 type counterparts. The

cb
e,bo

star

and Tebos

half-mass radii for cold baryon and stellar masses, r show also a good

correlation with My, but now the values of the SF parameters also play a role, because
their change implies a change in the time interval during which gas cooling is turned on,
and this changes the ELO stellar mass distribution, i.e., its length scale, so that ELO
compactness increases from EA-Z0 to EB-Z0 type simulations. Another important
result is that, regardless of the SF parameterizations used in this work, the relative
distributions of the stellar and dark mass components in ELOs show a systematic trend

tot/rstar

measured through the c,q = r 5 /757 ratios, with stars relatively more concentrated

as M., decreases (i.e., a quantification of the spatial homology breaking). However it
is important to note that this trend is not statistically confirmed (nor discarded) in all
samples (see discussion in Section 6.5.3). Note that to compare with observational data,

the relevant parameters are the projected half-mass radii, thﬁf). We have checked that

they show an excellent correlation with the corresponding three dimensional half-mass

radii, with the ¢, = rztﬁg / thﬁf) ratios showing no significant dependence on the ELO

mass scale.

Concerning kinematics, a useful characterization of the ELO velocity dispersion is

star

b, Whose observational counter-
b

the central stellar line-of-sight velocity dispersion, o

part can be measured from elliptical spectra. A very important outcome is the very tight

star

correlation we have found between My and o2,

confirming that the observationally
measurable oy is a fair virial mass estimator. In addition, alsg;ro is closely related to
the mean square velocity of both, the whole elliptical at the halo scale (including the
dark matter), Ug?ﬁ, and the stellar component of the central object, agfﬁg. We have also
found that the cyq = (055 /0505)? or the cype = (0550)%/3(01i2,)? ratios are roughly
independent of the ELO mass scale. And so, ELOs do not show dynamically broken
homology, even if their stellar and dark components are cinematically segregated (i.e.,
¢vd # 1). This could lead to inaccurate determinations of the total mass of ellipticals

when using stellar kinematics.

A very important result is that, irrespective of the SF parameterization, the (loga-
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rithms of the) ELO stellar masses M stellar half-mass radii 759, and stellar mean

square velocity of the central object Ugtﬁg, define intrinsic dynamical planes (IDPs).

These planes are tilted relative to the virial plane and the tilt does not significantly
depend on the SF parameterization, but the zero point does depend. Otherwise, the in-
trinsic dynamical plane is not homogeneously populated, but ELOs, as well as E galaxies
in the FP (Guzman et al., 1993), occupy only a particular region defined by the range
of their masses. The observational manifestation of this relation is the Fundamental
Plane.

In addition, ELOs 3D structural parameters, M, thﬁg and u define intrinsic
structural planes (ISPs). However these planes are not as tightly correlated as the IDPs
ones. The Photometric Plane is the observational manifestation of this relation. We have
also discarded the possibility that the Fundamental Plane and the Photometric Plane,
are a projection of a four parameter law. We made the study for the 2D observational
relations and their 3D counterparts. We found that the shape parameter n (or p in 3D)
does not add physical information to the Fundamental Plane relation (or intrinsic).

Stellar age properties of virtual ellipticals have shown a clear trend with their struc-
tural and dynamical characteristic parameters and seem to be linked with their forma-
tion and evolution processes in a cosmological scenario. Also, ELO stellar populations
have age distributions with the same trends as those inferred from observations, i.e.,
most stars have formed at high z on short timescales, and, moreover more massive ob-
jects have older means and narrower spreads in their stellar age distributions than less
massive ones (Dominguez-Tenreiro et al., 2004). This is equivalent to downsizing (see
3.3). We will discuss the implications of these results on the elliptical galaxy formation

and evolution scenarios in Chapter 9.

6.6.1.1 The Dimensionality of ELO and Elliptical Samples in Parameter
Space

The intrinsic dynamical planes and their occupations presented in this Chapter reflect
the fact that dark matter halos are a two-parameter family (for example, the virial
mass and the energy content or the concentration; see, for example, Hernquist, 1990;
Navarro et al., 1995, 1996; Manrique et al., 2003; Navarro et al., 2004b) where the two
parameters are correlated (see, for example, Bullock et al., 2001; Wechsler et al., 2002;
Manrique et al., 2003). Adding gas implies that heating and cooling processes also play
a role at determining the mass and velocity distributions, and, more particularly, the
length scales. However, as explained above, we have found that, the relative content
of the dark and baryonic mass components show systematic trends with the ELO mass
scale, that can be written as power-laws of the form M, /Mgt = Avir(Mﬁgar)Bvif. A
similar trend as the first one, although not statistically confirmed (nor discarded) in all

samples (see discussion in Section 6.5.3) is also observed in the relative distributions of
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the dark and baryonic mass components, riqt /rSfr = Agq(Mgtar)Pe .

A first consequence of the regularity of the trends with the mass scale found in this
Chapter is that no new parameters are added relative to the dark matter halo family,
so that the baryonic objects are also a two-parameter family, and ELO structural and
dynamical parameters define also a plane. A second consequence is that the plane is
tilted relative to the halo plane (i.e., the virial plane) because Byiy — frq 7# 0. Finally,
the plane is not homogeneously populated because of the mass-concentration halo cor-
relation that at the scale of the baryonic objects appears for example as a mass—size
correlation. This explains the role played by M, to determine the intrinsic three di-
mensional correlations. In this study we have also shown that af’gs’ro is a fair empirical
estimator of M, and this explains the central role played by oy at determining the
observational correlations.

The fundamental plane shown by real elliptical samples is the observationally man-
ifestation of the IDPs when using projected parameters RZ?@E, af(fs}] and luminosity
variables instead of stellar masses M. We have taken advantage of the constancy of
the stellar-mass-to-light ratios of ellipticals in the SDSS (Kauffmann et al., 2003b,a) to
put the elliptical sample of Bernardi et al. (2003b,c) in the same projected variables we
can measure in our virtual ellipticals. We have found that the FPs shown by the two
ELO samples are consistent with that shown by the SDSS elliptical sample in the same
variables, with no further need for any relevant contribution from stellar population
effects to explain the observed tilt. These effects could, however, have contributed to
the scatter of the observed FP, as the IDPs have been found to be thinner than the

observed FP.

6.6.1.2 The Physical Processes Underlying Mass Homology Breaking and

their Observational Implications

One of the most important findings in this study is the homology breaking ELO samples
show in the relative content and, possibly although still not statistically clear, in the
relative distribution of the baryonic and the dark mass components. As explained in
Onorbe et al. (2005, 2006), this has as a consequence the observed tilt of the Fundamen-
tal Plane relation relative to the virial one. Which are the physical processes underlying
this breaking of homology? According with our simulations, they lie in the systematic
decrease, with increasing ELO mass, of the relative amount of dissipation experienced
by the baryonic mass component along ELO stellar mass assembly (Dominguez-Tenreiro
et al., 2006; Onorbe et al., 2006). This possibility, already suggested by Bender et al.
(1992); Guzman et al. (1993); Ciotti et al. (1996), was first addressed through numerical
methods by Bekki (1998). He studied elliptical formation through pre-prepared simu-
lations of dissipative mergers of disc galaxies, where the rapidity of the SF in mergers

is controlled by a free efficiency parameter Csr. He shows that the SF rate history of
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galaxies determines the differences in dissipative dynamics, so that to explain the lack of
homology in EGs he needs to assume that more luminous galaxies are formed by galaxy
mergers with a shorter timescale for gas transformation into stars. Recently, Kobayashi
(2005) and Robertson et al. (2006) have confirmed the importance of dissipation and

the timescale for SF to explain mass homology breaking in ellipticals.

6.6.1.3 The Physical Origin of the Tilt in a Cosmological Context

We now turn to discuss the physical origin of the trends given by the power laws
My /M = Ay (ME8)Pvir and rgoﬁ / rztgf) = Aga(Mtar)Pra. As explained in Chapter 2,
the simulations provide us with clues on the physical processes involved in elliptical
formation (see also Dominguez-Tenreiro et al., 2004, 2006). Our simulations show that
the physical origin of the trends above lie in the systematic decrease, with increasing
ELO mass, of the relative amount of dissipation experienced by the baryonic mass
component along ELO stellar mass assembly (Dominguez-Tenreiro et al., 2006; Onorbe
et al., 2006). This possibility had been suggested by Bender et al. (1992); Guzman et al.
(1993); Ciotti et al. (1996). Bekki (1998) first addressed it numerically in the framework
of the merger hypothesis for elliptical formation through pre-prepared simulations of
dissipative mergers of disk galaxies, where the rapidity of the star formation in mergers
is controlled by a free efficiency parameter Cgr. He shows that the star formation rate
history of galaxies determine the differences in dissipative dynamics, so that to explain
the slope of the FP he needs to assume that more luminous galaxies are formed by
galaxy mergers with a shorter timescale for gas transformation into stars. Recently,
Robertson et al. (2006) have confirmed these findings on the importance of dissipation
to explain the FP tilt.

In this thesis we go one step further and analyze the FP of virtual ellipticals formed
in a cosmological context, where individual galaxy-like objects naturally appear as an
output of the simulations. Our results essentially include previous ones and add im-
portant new information. First, our results on the role of dissipation to produce the
tilt of the FP essentially agree with those obtained through dissipative pre-prepared
mergers and observational results, but it is important to note that, moreover, more
massive objects produced in the simulations do have older means and narrower spreads
in their stellar age distributions than less massive ones (see details Dominguez-Tenreiro
et al., 2004); this naturally appears in the simulations and need not be considered as

an additional assumption.

6.6.2 Summary

We conclude that the simulations provide a unified scenario where most current observa-
tions on ellipticals can be interrelated. In particular, this scenario proofs the importance

of dark matter halos in relaxed virtual ellipticals, and suggests that real ellipticals must
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also have extended, massive dark matter halos. Also, this scenario explains the homol-
ogy breaking in the relative dark to bright mass content and distribution of ellipticals,
which have important implications to explain the physical origin of the Fundamental
Plane relation, indicating that the FP tilt is due dissipative dynamics. In fact, the ELO
samples have been found to show systematic trends with the mass scale in both, the
relative content and the relative distributions of the baryonic and the dark mass ELO
components (see however, discussion in Section 6.5.3 on this last contribution). These
trends cause a tilt of the virial plane in such a way that there is no further need of any
relevant contribution from stellar population effects to explain the observed tilt. The
scatter of the observed FP, however, probably requires a contribution from such stellar
effects. All these trends are due to a systematic decrease, with increasing EL.O mass, of
the relative amount of dissipation experienced by the baryonic mass component along
ELO formation, a possibility that Bender et al. (1992); Guzman et al. (1993); Ciotti
et al. (1996) had suggested and in which we will deepen into the next Chapters.

Additionally, we have studied the Photometric Plane, another strong correlation
between structural parameters which could be an interesting alternative tool for the
study of elliptical galaxies at high redshifts instead of the Fundamental Plane that
requires a heavy amount of time for measuring velocity dispersions. We have found a
good agreement between our data and observations.

ELO stellar populations show age effects, that is, more massive objects produced
in the simulations do have older means and narrower spreads in their stellar age dis-
tributions than less massive ones this is equivalent to downsizing (Cowie et al., 1996;
Thomas et al., 2005) and naturally appears in the simulations, so that it need not be
considered as an additional assumption.

We have also shown that all these results do not depend significantly on the star
formation parameterization, cosmological values, resolution or box size. Concerning the
box size of our simulations we have arisen to the conclusion that simulations with a larger
box size are more realistic because they cover a wide range of possible environments
and histories for our virtual ellipticals. However this also leads to a much richer variety
of different physical processes and histories than in the smaller box simulations because
they cover a wide range of environment possibilities. Therefore, our samples with Ly, =
10 Mpc have a great advantage which is that we are able to isolate the different physical
processes which take part in the formation and evolution of elliptical galaxies. This
allows us to study the main processes involved in elliptical formation.

We will investigate in the following chapters all the fundamental relations presented
here at higher redshifts (Chapter 8) and the impact of these results concerning the

different elliptical formation and evolution scenarios (Chapter 9).



Chapter 7

Ellipticals at z = 0: The Rotation

versus Shape Relation!

7.1 Introduction

In this Chapter we continue the study of the properties of elliptical galaxies. We now
turn to the observed relationships between the rotation support and the shape of el-
liptical galaxies. We have already discussed the relevance of this interdependence in
understanding the origin and evolution of this type of galaxies (see Section 3.2.2). Here
we present a formal study of this relation using our samples of simulated ellipticals at
redshift zero.

In order to minimize possible bias in our samples, in this Chapter we extend our
analysis to all the objects that are well defined just at the ELO scale increasing the
number of elliptical-like objects in each sample: -STAR samples (see section 4.4 for
more details). ELOs in these samples show the same correlations as previous ones for
the stellar object scale, i.e., the Fundamental Plane, Photometric Plane and stellar age
properties. However they are embedded in a dark matter halo that it is not relaxed,
making the halo properties ill-defined. This happens because the halo is suffering a
merger at this scale. In these cases there can be some other significant stellar objects
around the main ELO. Therefore we consider that these ELOs are not relaxed (or in
equilibrium) at the halo scale. This is a problem in order to study, for example, the
origin of the Fundamental Plane, however for the analysis of this Chapter this is not an
important issue and in fact, we want to obtain a bigger and more representative sample
of elliptical galaxies. In general and for the sake of clarity, in this section we show
results for the FA-STAR-Z0 sample. Nevertheless, at the end of this Chapter we will
discuss all our conclusions for the different -STAR samples at z = 0 of our simulations
(see Table 4.3).

'Based on Gonzilez-Garcfa, Ofiorbe, Dominguez-Tenreiro, & Gémez-Flechoso (2009)
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This Chapter is organized as follows: In Section 7.2 we describe and discuss the
shape of the ELO samples. Section 7.3 is focused on the rotational support of simulated
ellipticals and the best parameters that describe it. Section 7.4 deals with the relation

between both properties. In Section 7.6 we present our conclusions.

7.2 The Shape of ELOs

We first study the 3D shape of the simulated ellipticals assuming that they can be
described by an ellipsoid of semiaxes a, b and ¢, with a > b > ¢. These parameters have

been obtained from the mass within the stellar effective radius, r:tgg, and within the

stellar 90% mass radius, rgt(ff)o (see 4.5 for details on their calculation from the inertia

tensor). From these quantities we have defined several parameters that describe the 3D
shape at both radii. First, we have calculated the axis ratios, b/a, ¢/a and the triaxiality

parameter, T, introduced by de Zeeuw & Franx (1991)

_ 1—(b/a)?
1 —(c/a)?

as a more complete descriptor of the 3D shape of the simulated elliptical. However as

T (7.1)

the T parameter does not distinguishes between a triaxial object with ¢/a ~ 0.9 (which
is close to be a sphere) and a more flattened one with ¢/a = 0.5, we have defined a new

shape parameter, S = s+ (1 — T, where

if c/a<09&T>0.7 (prolate)
if ¢/a<09&03<T<0.7 (triaxial)
if c/a<09&T <03 (oblate)

if c/a>0.9 (sphere)

(7.2)

w N = O

so S takes values € (0,1) for prolate spheroids, € (1,2) for triaxial spheroids, € (2, 3)
for oblate objects and € (3,4) for sphere-like objects.

In Figure 7.1 we present the results for the axis ratios obtained within both radii
for the FA-STAR-Z0 sample. Also, to deepen into the shape distribution of simulated
ellipticals at redshift z = 0 in Figure 7.2 we present the histogram of the S parameter
for the EA-STAR-Z0, EB-STAR-Z0 and EF1-STAR-Z0 samples. We will discuss about
possible differences between these samples in Section 7.5.

The first conclusion that arises from these figures is that the shape of simulated
ellipticals clearly depends on the radius where we calculate it. This is not surprising
and was already notice in first calculations of the projected shape of ellipticals (Bender,
1988; Ryden et al., 2001). This is also found in our simulations, and as the observational
data, our results indicate that in general as we deepen into the inner parts of an object,

it tends to be rounder. So, statistically, just using smaller radius limits we obtain higher
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Figure 7.1: 3D axis ratios for the FA-STAR-Z0 sample calculated at different radii:
ST (left) and rii - (right). Full red circles stand for ELOs with Mgt > 1 x 10! Mg

while empty red circles stand for ELOs with Mgt <1 x 101! M.

axis ratios.

Concerning the shape distribution of nearby ellipticals, recently Kimm & Yi (2007)
have calculated the intrinsic axis ratio distribution of nearby (0.05 < z < 0.06) early-
type galaxies from the SDSS. From a total 3922 sample they have obtained that around
~ 45% are triaxial, ~ 29% oblate and ~ 30% prolate. Also they found that luminous
early-types are mostly triaxial(~ 68%), whereas the less luminous sample has a larger
number of oblate types (~ 38%) than the complete sample. A clear comparison of
our results with Kimm & Yi (2007) data is not straightforward because the authors
have to make several assumptions in order to do the deprojection and this technique
is highly model dependent. Moreover it is not clear what characteristic radii limit was
used. However our results are interesting in two ways. First, we have confirmed that
axis ratios are clearly greater than 0.2, one of the assumptions of these authors used
to build their models. Second, concerning statistics, we obtain ~ 2(14)% spherical
objects, ~ 54(34)% triaxial, ~ 30(25)% oblate and ~ 14(27)% prolate objects for the
Tooho (o) radius. In this context, it is also interesting to point out that taking
into account the axis ratios seen in Figure 7.1, using the classical division between just
triaxial, prolate and oblate objects, all the sphere-like objects in our sample would be
classified as triaxial ones. Therefore our statistics seems to be in good agreement with
that obtained from the deprojection of the SDSS early-type galaxies. In this sense, it is
also worth noting that the shape distribution for a sample obtained from a simulation
with different star formation parameters (EB-STAR) show very small differences at the

effective radius, 75920, At 750 | results are in agreement within the errors bars.
b K
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Figure 7.2: 3D Shape histogram, S, for the FA-STAR-Z0 (red line), EB-STAR-Z0
(blue dashed line) and EF1-STAR-Z0 (orange dotted line) samples calculated using

Equation 7.2 at two different characteristic radii: 7592 (left) and r§ir = (right).

Another important parameter we have measured is the 3D ellipticity, esp = 1 —¢/a.
This is the quantity that appears in the Equation 3.15, relating the amount of rotation
with the anisotropy of a virialized object (see Section 3.2). We have calculated it both
at the rztgg

€, which is the quantity used to determine the shape of real galaxies. We have measured

and the 7“3%67‘{) ., radii. Its observational counterpart is the projected ellipticity,
it using one hundred random projections, also for two radii, the projected equivalent
of the 3D cut-off radii, RS and R§&T .

i See Section 4.5 for the details on how we

measure these quantities.

In Figure 7.3 we can see a remarkably good correlation between the 3D shape pa-
rameters and their observational counterparts. It is important to mention that we found
that the dispersion due to projection effects for the 2D quantities is high (up to ~ 40%).
Concerning the relation between e3p and other shape parameters, no tight correlation
with 7" is found. This just indicates that the values of the three axis of the ellipsoid are
not correlated and that for certain ¢/a we obtain some dispersion in the b/a axis ratio

(see Figure 7.1). Although obviously, ¢/a puts the lower limit to this relation.

Finally we have studied the correlation between the different shape parameters de-
scribed in this section S, T' and egp and the stellar mass, M (Figure 7.4). No clear
trend has been found. Concerning observational results, the first ones suggested that
more massive objects were rounder (see Section 3.2). Recent work with the SDSS data
(Hao et al., 2006), also point towards this direction but with a very high dispersion.
When we plot the 3D ellipticity versus the stellar mass (see Figure 7.4) we obtain very
similar results as these authors, especially in the sense that for lower masses we obtain

a higher dispersion in the ellipticity values.
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Figure 7.3: 3D shape parameters, e3p, calculated at two different characteristic radii:
rSRr (left) and rjiy - (right) versus their projected counterparts for the EA-STAR-Z0

sample. Full red circles stand for ELOs with M > 1 x 10" M, while empty red
circles stand for ELOs with Mgt <1 x 10! M.

To sum up, concerning the 3D shape of simulated objects both scales, rztgg and rgg’},‘; o
can be used, both of them are convenient descriptors and correlate well between each
other. Concerning the 2D shape descriptor, current observations of elliptical galaxies
usually measure their ellipticity between 0.5 and 2 times the projected effective radius
(Bender et al., 1994; Cappellari et al., 2007). In consequence we will use €(< thgf)) as

the formal descriptor of the 2D shape of the simulated ellipticals and the one we would

use whenever we want to compare with real data.
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Figure 7.4: 3D shape parameters, e3p, calculated at two different characteristic radii:
rSr - (left) and r§it, (middle) versus the stellar mass for the EA-STAR-Z0 sample.
Right panel shows results for the SDSS data (Hao et al., 2006).
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7.3 The Rotation of ELOs

The phase-space information available in our simulations allows us to calculate the
amount of rotation in ELOs in several ways and using different descriptors. In fact,
there are several different options in the literature to account for the 3D rotation of
an object (Emsellem et al., 2007). Our method aims to two main objectives. First,
we want to compare with observations. For this purpose the best option is obtaining
Vinax/ af:j;ro which, as explained in Section 4.5.3, is the more often used parameter in real
data measurements (see however van der Marel & van Dokkum, 2007; Emsellem et al.,
2007, for new observational descriptors). Second, we want a robust descriptor of the real
3D amount of rotation for elliptical-like objects that can be also easily compared with
the 2D descriptor. For this purpose we choose the tangential stellar velocity in units of
the 3D dispersion, Vj/05%". Basic details on their calculation can be found in Section
3.2 and here we would just discuss the results and the different options and paths. One
of this subjects, as in the shape study, is how the amount of rotation depends on the
radius where it is measured or, in the case of Viax, the length of the slit. Therefore,
as in the shape analysis, we have chosen rifl and r§'f, for the 3D studies and their
projected counterparts, thﬂg and R%’Tﬁo for the 2D.

Concerning the guest for a suitable 3D rotation descriptor, two possible candidates
are Vy /o5 (see Section 4.5.3) and the specific angular momentum of each ELO, both
of them at the two characteristic radii (i.e. 4 possibilities). Note that the intrinsic
angular momentum is a cumulative quantity, while V,/o§®" is measured at a given
radius. Our results show that the two intrinsic angular momenta correlate well with the
3D rotation descriptor calculated at the effective radius, Vi /o5 (r555). On the other
hand, we found that Vj /o5 (r5i},) do not show any strong trend with the intrinsic
angular momenta. This is not really surprising because it depends on the external layer
of the simulated object which takes longer to relax to any perturbation of the object (for
example, matter coming from a recent major merger) and it is very sensitive to different
events, as small satellite mergers or gas infall, which do not account for the global
properties of the object. We do not find this problem for the shape descriptors, nor the
intrinsic angular momenta, because contrary to Vj/ o5 they are cumulative quantities.
For these reasons, the best 3D rotation descriptor to account for the global properties
of simulated ellipticals is Vj/ agtar(r:gg), while V,,/ Jgtar(rgga}f)o) describes rather rotation
at the external layers.

Concerning the 2D descriptor, we have also measured Vi,ax choosing the maximum

length of the slit to be either thf)‘f) or Rgto%rbo (see Section 4.5 for details on this calcu-

lation). Results can be appreciated in Figure 7.5 where we plot V,,/o§" (rStar

star star star star i3
Vinax/0ioe0 (L ho) and Vinax /o (Rogh,) and we see for both limits we found a good

) versus

correlation between the 2D and the 3D rotation parameter V,/o§ (rStr). We also

found some interesting facts. First of all, the two projected quantities show a good cor-
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relation between each other and secondly, for the same ELO, V.« shows a higher value
for a larger length of the slit. The dependence of Viax on the slit length was already
noticed in real ellipticals by Bender (1988) who pointed out that in order to obtain a
good estimation of this parameter one should be able to measure, at least, up to the
projected effective radius of the galaxies (thgg) Taking into account Figure 5.21 the
correct way of doing it would be obtaining the profiles, at least, up to a radius where
they settle down. In this sense, RgY,,, seems to be a more suitable option than RYfy.
Note, however, as it happens with the shape, current observations reach between 0.5
and 2 times the projected effective radius (Bender et al., 1994; Cappellari et al., 2007).
So we will use both of them. Two comments are in order: i) the amount of rotation
measured at RZ{Y is a lower limit of that measured at R§, (see Figure 7.5); ii) Both
Vinax/ af’g;ro quantities have to be considered as lower limits of the intrinsic rotational
support of the galaxy, just due to projection effects (see discussion on this topic in
Rothberg & Joseph, 2006). It is also important to remark that, the Viy.x parameter
presents a high dispersion due to projection effects (~ 35%) for both slit lengths.
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Figure 7.5: EA-STAR-Z0 3D rotational support parameter, V,,/o5", calculated at the
effective radius, r5%2 | versus its projected counterparts, Viax/o52h, calculated at two

different characteristic radii: RS%* (left) and R35, (right).

e,bo
The only exceptions to all these trends are some small objects for which we obtain
Vinax (RE2) = 0. These results are related with the resolution limits. In these cases,
the slit is too small to include enough particles to have a proper estimation of Viax up
to Rgpe.
We have also studied the relation between the amount of rotation of each simulated
elliptical with their stellar mass. From Figure 7.6 we can see that, as the stellar mass

increases, the mean and dispersion of the rotational support decreases. This is in good
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agreement with recent observational results (Rothberg & Joseph, 2006; Emsellem et al.,
2007) and seems to follow roughly the prediction of Davies et al. (1983) that luminosity

(and therefore mass) increases as objects have a lower rotational support.
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Figure 7.6: 3D rotational support parameters, Vy/o5%", calculated at two different

characteristic radii: 'rztﬁg (left) and 7’3%37”{)0 (right) versus the stellar mass for the FA-
STAR-Z0 sample.

7.4 Rotation vs. Shape: 3D and 2D Results

Once we have robust descriptors of the shape and the rotational support of our simu-
lated ellipticals, both for 3D and 2D analyzes, we have studied their possible relation.
Figure 7.7 shows the classical diagram introduced by Davies et al. (1983) between the
two observational parameters for our simulated ellipticals. In this Figure we also plot
some recent observational results for elliptical galaxies. We find a very good agreement
between observational data (Bender et al., 1994; Cappellari et al., 2007) and our simu-
lated ellipticals. On one hand, fast rotators (Viyax/ alsgsro > (0.2) show a good correlation
with the shape parameter, e. On the other hand, slow rotators (Vimax/ope < 0.2)
display misalignment between the structural and kinematical axes. These results are
consistent independently of the length of the slit used to obtain Viyax, thﬁg or R;toff)o,
however we obtain a better comparison with the last one. In Figure 7.8 we present the
3D equivalent plot for these quantities and found that the relation observed between
shape and kinematics not only holds for the 3D parameters data but moreover it is
clearer.

In order to study the shape and kinematics misalignment, we plot in Figure 7.9
(upper panels) the same diagrams introduced in previous Figures but in this case show-

ing the 3D shape parameter, S, for each object. Results are really interesting because
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Figure 7.7: The projected shape parameter at R versus the projected rotational

they point towards a possible clear segregation of elliptical galaxies in the 2D classical
diagram depending on the 3D shape. This is not a surprise and it is in good agreement
with the theoretical prediction made in Section 3.2 based on the virial theorem approx-
imation. First, we can see that oblate objects show a clear correlation between shape
and rotation which is exactly what we expect from our approximation. Second, prolate
objects tend be in the lower part of the diagram. As expected, triaxial objects seem
to be between the two previous types (see Binney, 1978). This result is found not only
for the 3D values of shape and rotation but also for the mean projected values (lower

panels of Figure 7.9).
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shape descriptors (esp and €) for the EA-STAR-Z0 sample. Color and shapes of this
figure stand for the 3D shape calculated using Equation 7.2 for the characteristic radius
that corresponds in each case: Yellow pentagons for spheres, blue squares for oblate
objects, red circles for triaxial objects and green triangles for oblate objects. Black
solid line indicates the locus for oblate rotators (Binney, 1978).
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7.5 Consistency Checks

Concerning resolution Figure 7.10 shows the results of two consistency checks performed
using the 6705 and 7705 simulations (ED sample, see Section 4.2 for details). Figure 7.10
(left panel) shows the star-formation history of two objects, the most and least massive
ELOs in these simulations (see Section 9.2 for more details on the star formation histories
of our ELOs). The black dotted line and the solid green line depict the results of the
simulations with 2 x 1283 and 2 x 643 particles, respectively. We found small differences,
especially at early times, although the two systems display general similar behavior, and
at high cosmic times (low redshift) no significant differences are evident. A similar test
was completed by Naab et al. (2007) and, although the numerical approaches differ, it
is reassuring to also find convergence in this resolution test.

Figure 7.10 (right panel) presents comparative results of the same objects at z = 0 in
the two simulations where we computed the observables introduced above on shape and
kinematics. The systems appear to be stable and agreement between the simulations
results is good, although one object does exhibit a significant difference. This system is
not the least massive in these simulations and the difference is due to the peculiar way
in which the Vj/ o5 parameter is measured, such that particles at different radii are

considered.
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Figure 7.10: Left: Star formation history of the most (top) and least (bottom) massive
ELOs for the ED test simulations with 2 x 643 particles (7705, solid green line) and
2 x 1283 particles (6705, dotted black line). Right, comparison of the kinematic (top)
and shape (bottom) observables. For details, see text.

We now comment on the box size and star formation systematics. First, the good
agreement obtained between 2D and 3D parameters and their trends with mass for
the EA-STAR-Z0 ELOs also hold for samples obtained from simulations with different

box sizes and/or star formation parameters. In Figure 7.2 we have seen the shape
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distribution for the FB-STAR-Z0 and FF1-STAR-Z0 samples. Results show a good
agreement within the error bars. Figure 7.11 shows 3D and 2D rotation versus shape
diagrams for EB-STAR-Z0, EF1-STAR-Z0 and EF3-STAR-Z0 samples, using the 3D
global shape parameter, S, to determine the color and shape for each object. Segregation

in the diagram depending on this parameter is also found for these samples.
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Figure 7.11: 3D (up) and 2D (down) rotational support versus projected shape descrip-
tors for the EB-STAR-Z0 (left), EF1-STAR-Z0 (middle) and EF3-STAR-Z0 (right)
samples. Color and shapes of this figure stand for the 3D shape parameter, S, cal-
culated using Equation 7.2 for the characteristic radius that corresponds in each case:
Yellow pentagons for spheres, blue squares for oblate objects, red circles for triaxial
objects and green triangles for prolate objects.

7.6 Conclusions

To conclude, by studying the classical diagram introduced by Davies et al. (1983), we
have shown that the shape distribution of our simulated galaxies and their kinematics
are closely related and in good agreement with the observational data. Current ob-
servational results on this diagram still lack of reliable statistics when comparing with
other known Fundamental Relations, mostly due to the high cost of measuring Vi,ax.
The largest homogeneous set of long-slit Vipax/ alsgs% and ellipticity values is currently
constituted by the 94 measurements for elliptical galaxies by R. Bender (see Cappellari
et al., 2007). In this context, we have been able to deepen into this relation through

our simulations and we have reached several interesting new ideas on this topic. First,
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this classical diagram holds when we use the 3D parameter counterparts. The clear
segregation of elliptical galaxies in the € vs. Vipax/ Ulsgs% diagram depending on the 3D
shape is a very interesting result, expected from theoretical considerations (see Section
3.2), but never confirmed in self-consistent cosmological simulations. It could explain
some observational results for merger remnants (Rothberg & Joseph, 2006) that showed
variations among expected correlations between shape and rotation. We think that our
conclusions can be very useful to both, observers and theoreticians, in order to constrain
and use different structural and kinematical models to describe elliptical galaxies. For
example, concerning the shape distribution, we have put some clear limits on the intrin-
sic axis ratio values, useful for the deprojection techniques applied in observed galaxies
(Kimm & Yi, 2007). Also the confirmation that, just because projection effects, the
Vinax/ afgsa’ro ratio measured in real ellipticals must be considered as a lower limit to the
rotational support is an important issue in order to analyze observational data. The
study of these projection effects has allowed us to show that both parameters, ¢ and
Vinax, present a high dispersion from the mean, 40% and 35% respectively, taking one
hundred random projections (see Section 4.5.3). This is much higher than any other

star star : :
e.bo OT Tlog 07 that present around 5% dispersion

quantities studied in this thesis, as R
due to projection effects.

We have confirmed that more massive ELOs show a lower dispersion in rotational
support and shape values than less massive ones, pointing to rounder shapes and less ro-
tational support for the first ones. Finally we have seen that the 3D shape of a simulated
elliptical could be constrained by the position that it occupies in the classical diagram
that relates these two quantities. All these conclusions can be also corroborated in the
2D projected parameters, observationally available, that quantify these characteristics
€ and Viax /Uf(f;ro. Moreover we have seen that the 3D shape of an elliptical could be
constrained by the position that it occupies in the classical diagram that relates these
two quantities.

In fact, ELOs have shown a very good agreement with a different set of observations
at z = 0. In following chapters we will study how they formed and their structure and
kinematics at higher redshifts. In addition, we will discuss deeply the impact of all these

results concerning the different elliptical formation and evolution scenarios.



Chapter 8

Evolution of Ellipticals out to
z=1.5 1

8.1 Introduction

Once the simulated elliptical population at redshift z = 0 has been analyzed in detail, the
next logical step is to extend this work to the population samples at higher redshifts:
z=10.5,z=1and z = 1.5. We have searched for ELOs in all the simulations and
analyzed them at these three different redshifts. The process of building all these
samples is explained in Section 4.4. Nevertheless, here we remember the reader that
higher redshift samples have been built following the same criteria as the z = 0 samples.
In addition, we have calculated all the different parameters studied in the z = 0 samples
following the same methodology. We point to Section 4.5 for a complete description of
the analysis method. The exact values of these parameters for the different ELO samples

can be found in Appendix D.

This Chapter focuses on the study of possible indications of evolution for the different
virtual elliptical samples. In order to obtain results easily to compare we have focused
our work in studying the tightest correlations found at redshift z = 0. First Section is
related with the most important of all these relations, the Fundamental Plane. After-
wards, in Section 8.3, we deepen into the Photometric Plane relation, closely related
with the first one. In Section 8.4 we analyze other interesting structural and kinematical
parameters discussed in the previous Chapter and their correlations. Finally Section 8.5
describes how the shape and rotational support relation behaves at different redshifts.

Our conclusions are summarized and discussed in Section &.6.

'Based on Dominguez-Tenreiro et al. (2006); Ofiorbe et al. (2007, 2008); Gonzdlez-Garcia et al.
(2009)
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8.2 The Fundamental Plane

In our study of virtual ellipticals at z = 0 we found that they populate a flattened

ellipsoid close to a two-dimensional plane in the intrinsic (i.e., three-dimensional) char-

star

star) and velocity dispersion (03756) space (the Intrinsic

acteristic mass (M), radius (r3ie
Dynamical Plane, IDP, see Section 6.2.2). Therefore to characterize and study possi-
ble evolution effects of the structural and dynamical properties of ELOs, we describe
their three dimensional distributions of mass and velocity through these three intrinsic

parameters the stellar mass at the baryonic object scale, MF%", the stellar half-mass

and the mean square velocity for stars, a?,’tﬁg, whose ob-

servational projected counterparts (the luminosity L, effective projected size Rgght, and

star

radius at the same scale, 7510

stellar central line of sight velocity dispersion, o() enter the definition of the observed
FP. We use firstly three dimensional variables rather than projected ones to avoid pro-
jection effects. As well as in our study at z = 0 we have used ELOs that are well defined
both at the stellar and halo scales. See Section 4.4.1 for the details about how we built

these samples.

To measure the structural and dynamical evolution of ELOs, we carry out a principal
component analysis of the EA, EB (different star formation) parameters and EF'3 (larger
box size) samples at redshifts z = 0.5, z = 1 and z = 1.5 (defined in Section 4.4) in

star

star and v = log o5 through

the three dimension variables E = log M%", r = log rstar

their 3 x 3 correlation matrix C. In Section 6.2.2 we presented an introduction on the
PCA method and the results of this study for the different samples at z = 0. We
have found that one of the eigenvalues of C is, for the three ELO samples analyzed,
considerably smaller than the others (as we found for the FA-Z0 sample), so that ELOs
populate at any z a flattened ellipsoid close to a two-dimensional plane in the (E,r,v)
space; the observed FP is the observational manifestation of this dynamical plane. The
eigenvectors of C indicate that the projection

E—E,=aP(r —#)+vPw—1,), (8.1)
where E,, T, and v, are the mean values of the E, r and v variables at redshift z, shows

the plane viewed edge-on.

Table 8.1 gives the planes Eq. (8.1) for the EA, EB and EF3 samples at different
zs, as well as their corresponding thicknesses og,y(2), the distances d(z) of the sample
center of mass at z (i.e., the [Ez,fz,\?z] point) to the plane Eq. (8.1) at z = 0, and the
fraction of ELOs in the z = 0.5, 2 = 1 and z = 1.5 samples whose distance to the z =0
sample is larger than 20g,(z = 0). In order to compare the EB and EF'3 samples with
EA we also show the distances d(z) of the sample center of mass at z (i.e., the [E,, T, v,]
point) to the FA-Z0 plane and the fraction of ELOs of these samples whose distance to

the FA-Z0 sample is larger than 20€£7Z0
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We see that the sample averages E,, T, and ¥, grow as z decreases, but in any case for
the EA and EF3 samples | d(2) |< ogrv(z = 0), so that they move roughly on the z =0
plane within its rms scatter. We have also plot this space of parameters in Figure 8.1 for
the FA-Z0 sample. EB present very similar result but for the z = 1.5 sample. However,
we also checked that all ELOs of these samples are within 3 times the og(z = 0).
These results indicate that ELO evolution preserves their dynamical plane and strongly
suggest that the evolution shown by the Fundamental Plane of real ellipticals must
be explained, basically, as due to the changes of luminosity of their passively evolving
stellar populations, corroborating other observational findings on elliptical homogeneity
(see section 3.3.1). In regard to the comparison between the EB and EF'3 samples with
the FA-Z0 intrinsic dynamical plane (columns 11 and 12 of Table 8.1), mean values of
EB samples are displaced by a constant distance from the FA-Z0 plane. These results
consolidate the idea, already discussed in Section 6.2, that EB dynamical plane is the
same one as the EA one but with a different zero point. Results on the FF'3 samples

show a very good agreement with the FA-Z0 plane.
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Figure 8.1: Evolution of the structural and kinematical fundamental parameters: Mggar,
PSR oS for EA runs at different redshifts.

We have also searched for the observational manifestation of this intrinsic relation

in all these samples. As in Chapter 6 we have used the projected parameters M Cs;i‘i)o,
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Sample  # E, I, \£ P PP v | a2 % outside 2040 7 dFA=20 % outside wqmmwwm 0
EA-7Z0 26 10.987 0.735 2.312 0.459 1.928 0.014 - - - -
EA-70.5 19 10.821 0.550 2.278 0.230 2.166 0.021 | 0.007 30% 0.007 30%
EA-7Z1 21 10.803 0.492 2.282 0.239 2.066 0.016 | 0.008 13% 0.008 13%
FA-7Z1.5 16 10.860 0.495 2317 0.239 2.120 0.013 | 0.009 18% 0.009 18%
EB-70 17 11.245 0.667 2.420 0.392 1.776 0.017 - - 0.032 35%
EB-70.5 14 10.943 0.368 2.339 0.331 2.009 0.012 | 0.020 21% 0.031 50%
EB-7Z1 16 10.999 0.399 2.360 0.380 2.248 0.018 | 0.017 25% 0.031 56%
EB-71.5 16 10.832 0.261 2.307 0.497 1.936 0.015 | 0.057 31% 0.032 63%
EF3-Z0 11 10.816 0.416 2.278 0.352 1.969 0.018 - - 0.018 45%
EF3-721 8 10.686 0.378 2.236 1.259 1.278 0.019 | 0.015 13% 0.005 13%

Table 8.1: Principal component analysis of mass, radius and dispersion velocity for EA simulations. Column 2: number of objects in the
sample. Columns 3, 4 and 5: mean values of the E, r and v variables at each z. Columns 6 and 7: coefficients of Eq. (8.1). Column 8:
rms orthogonal scatter of the dynamical planes at each z. Column 9: for each z, distance of the AME T,,V,) point of the different samples
to its Z0 plane. Column 10: % of objects of the different samples whose distance to its Z0 plane is larger than twice its scatter. Column

11: for each z, distance of the (E,,T,,V,) point to the EA-Z0 plane. Column 12: % of objects of the different samples whose distance to
the EA-Z0 plane is larger than twice its scatter.
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R, o to build the Dynamical Plane and compare with observational data. We
have moved these variables to the x” system (see Equations 6.5-6.7) so that we can plot
easily the edge-on and face-on projections of this plane. As Figure 8.2 shows, we have
found that FA ELOs at all these redshifts also lay on a fundamental plane with almost
the same tilt as ELOs in z = 0. We have obtained the slopes, through direct fits, of
the H3D = MjkP + My relation that reflects the edge-on projection of the Fundamental
Plane. Results of these fits can be found in Table 8.2 and confirm the lack of evolution
of the tilt of the Dynamical Plane. We also show the kappa space projections for the
EB and EF'3 samples in Figure 8.3. M coefficients for these samples can be found in

Tables 8.3 and Tables 8.4, respectively.

TT T T [ TP T [T T T T[T T T[T T T T T[T I\ T [TIT[TTT[TITT
pooa b bev s by b b bvva b bvna oWy

3}

e7z=0.0 z=05 z=10 +z=1.5

Figure 8.2: The Dynamical Plane viewed edge-on (top) and face-on (bottom) for EA-
Z0 (red), EA-Z0.5 (green), EA-Z1 (blue) and FA-Z1.5 (cyan) in the kappa space. We
also draw the respective concentration ellipses (with their major and minor axes) for
the SDSS early-type galaxies sample from Bernardi et al. (2003c) in the z-band and
r-band. See text for more details.

To deepen into the tilt issue and the origin of the Fundamental Plane, we have
made the same statistical analysis as for the z = 0 samples. That is, we have studied
the fundamental structure and kinematical parameters that characterize our virtual
ellipticals at different scales: the halo scale, the baryonic object scale and the projected

baryonic scale, verifying that higher redshift samples also satisfy the virial theorem
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e7z=0.0 z=05 z=10 +z=1.5

Figure 8.3: The Dynamical Plane viewed edge-on (top) and face-on (bottom) at different
redshifts (z = 0 red; z = 0.5 green; z = 1 blue; z = 1.5 cyan) for EB (left) and EF3
(right) in the kappa space. We also draw the respective concentration ellipses (with
their major and minor axes) for the SDSS early-type galaxies sample from Bernardi
et al. (2003c) in the z-band and r-band. See text for more details.

relation and searching for the origin of the tilt of this relation at the projected baryonic
scale (see more details in Section 6.2.4). Results of the log-log fits are in Tables 8.2,
8.3 and 8.4 for the FA, EB and EF3 samples. It is interesting to point out that higher
redshifts samples (apart of having a lower number of virtual ellipticals) cover a bit lower
mass range. In spite of these drawbacks the statistical analysis confirms robustly that
Myir /ME2T leads to a Byir # 0, thus contributing to the tilt at any z (see also Figure 8.6).

star
e,bo

relation. In this case, dispersion is too high at higher redshifts to allow us to reach a

The other factor involved in explaining the origin of tilt at z = 0 is the ¢,q = 7vir /7

firmly statement however they do not discard our previous conclusions.

Finally we want to discuss some indications of mild evolution observed in our sta-
tistical analyzes (Tables 8.2, 8.3 and 8.4) and Figure 8.1, specially for the most massive
objects in our samples. These trends for the massive galaxies point to a decrease of
the effective radius and an increase of the velocity dispersion as redshift increases at a
fixed mass. Both changes compensate one to each other so we do not see any changes
in the edge-on view of the Fundamental Plane. This result is in agreement with the
conclusions of Ciotti et al. (2007) and Robertson et al. (2006); Hopkins et al. (2008b,a).
These authors showed, using an analytical approach and by simulating galaxy mergers
respectively, the great importance of dissipation in the evolution of the fundamental
scale relations. Recent observational results have shown a very strong evolution of the

effective radius and velocity dispersion in this direction for the massive ellipticals (Tru-



8.2 The Fundamental Plane

183

| Parameter EA-70 EA-70.5 EA-71 EA-71.5
M, 0.238 £0.039  0.191 + 0.086  0.226 + 0.077  0.235 £ 0.177
Buir 0.221 £ 0.083  0.355 + 0.104  0.237 £+ 0.193  0.398 =+ 0.212
Bu -0.162 + 0.140  0.129 + 0.214  -0.048 4 0.298  0.288 + 0.415
Bt 0.048 £0.040 0.030 £ 0.061  0.011 £ 0.099 -0.032 £ 0.089
Bud 0.000 & 0.037  -0.046 £ 0.060 -0.139 + 0.097 -0.074 =+ 0.091
Bupe 0.012 £ 0.033  0.102 £0.050 ~ 0.038 & 0.075  0.086 = 0.159
Pra -0.231 £ 0.146  0.018+ 0.198  0.035 £ 0.282  0.308 + 0.398
Brp 0.011 +0.012  0.029 £ 0.020  0.014 £ 0.016  0.009 = 0.044

Table 8.2: Slopes for linear fits at different redshifts for FA samples. Column 2: the
slopes, for EA-Z0 sample, of the /4;3D = M1/<c]13 + M) relation (direct fits); the slopes of
the My, /M and ¢ o (Mﬁgar)ﬁi scaling relations for the FA-Z0 sample, calculated
in log —log plots through direct fits. Errors stand for the respective 95% confidence
intervals. Column 3, 4 and 5: same as columns 2 for FA-70.5, EA-Z1 and EA-Z1.5
samples respectively.

jillo et al., 2007; Buitrago et al., 2008; van der Wel et al., 2008; Cenarro & Trujillo,
2009) raising a considerable interest for this issue in all the astrophysical community.

Although still not clear, the interpretation of these trends could be linked with the
amount of dissipation that each ELO has suffered along its mass assembly. Mergers
that do not involve gas (also called dry mergers) will produce remnants with larger
effective radius and lower velocity dispersion than those mergers which do involve it
(wet). Available observations seem to indicate that mergers do happen in the life of
elliptical galaxies, with wet mergers dominating at high redshift and dry merging mainly
affecting massive elliptical galaxies at z < 1.5 (e.g., see Khochfar & Burkert, 2003; Bell
et al., 2004, 2006; van Dokkum, 2005; Conselice, 2006; Faber et al., 2007). Therefore
for a galaxy with a fixed mass, its effective radius will be higher as the assembly of its
mass occurs at lower redshift because it has involved less dissipation.

We can also see this effect in Figures 8.2 and 8.3. Some mild evolution can be seen in
the kP vs kD projection, while the edge-on view (kP vs k%) does not show significant
changes. In general, ELOs at lower redshifts tend to have lower values of EQD for a
specific value of kP than higher redshift ones, specially as we go to higher values of
/1{3 . In this sense, the position of a simulated elliptical in this plot is linked with the
amount of dissipation that it has suffered along it mass assembly. We will deepen into

this picture in Section 9.2 of the next Chapter.
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| Parameter EB-70 EB-70.5 EB-71 EB-71.5
M, 0.277 £ 0.060  0.237 £ 0.086  0.288 £ 0.091  0.198 + 0.124
Buir 0.290 £ 0.193  0.293 £ 0.153  0.313 £ 0.288  0.500 £ 0.203
Bum -0.167 £ 0.288 -0.095 + 0.300 -0.104 £ 0.427 0.307 £ 0.254
B¢ -0.007 £ 0.072  -0.003 £ 0.044 -0.076 £ 0.110 -0.089 =+ 0.073
Bva 0.000 £ 0.113  -0.067 + 0.102 0.053 £ 0.111  -0.010 % 0.091
Bvpe 0.069 &£ 0.109  0.047 £ 0.081 -0.159 £ 0.106  0.021 £ 0.136
Bra -0.247 £ 0.266  0.025 £ 0.277  0.029 £ 0.398  0.413 £ 0.279
Brp 0.026 £ 0.021  -0.001 & 0.035 0.062 £ 0.047 -0.034 £ 0.028

Table 8.3: Slopes for linear fits at different redshifts for EB samples. Column 2: the
slopes, for EB-Z0 sample, of the /13D = Mm]l) + My relation (direct fits); the slopes of
the My /M and ¢ o (Mﬁgar)ﬁi scaling relations for the EB-Z0 sample, calculated
in log —log plots through direct fits. Errors stand for the respective 95% confidence
intervals. Column 3, 4 and 5: same as columns 2 for £B-Z0.5, EB-7Z1 and EB-7Z1.5

samples respectively.

| Parameter EF3-70 EF3-71
M, 0.193 £ 0.111  0.184 £ 0.156
Brix 0.345 + 0.166  0.533 + 0.544
Am 0.092 4+ 0.249  0.317 + 0.488
B 0.056 + 0.060  0.008 =+ 0.117
Bva -0.035 4 0.072  0.038 & 0.158
Bupe 0.086 + 0.107  -0.020 + 0.281
Bra -0.045 4 0.232  0.270 + 0.408
Brp 0.026 4 0.022  0.022 + 0.056

Table 8.4: Slopes for linear fits at different redshifts for EF'3 samples. Column 2: the
slopes, for EF3-70 sample, of the kY = M;xP + My relation (direct fits); the slopes of
the My, /Mgf)ar and ¢ x (Mggar)ﬁi scaling relations for the FF3-Z0 sample, calculated
in log — log plots through direct fits. Errors stand for the respective 95% confidence
intervals. Column 3: same as column 2 for FF'3-Z1.
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8.3 The Photometric Plane Evolution

Following the analysis of structural and kinematical fundamental parameters, we want to
deepen into one that has earned a lot of interest in the last years, the shape parameter,
n. We want to study the evolution of the different correlations, as the Photometric
Plane, that we found at z = 0 in which this parameter is involved (see Section 6.3).
Therefore, firstly we have analyzed how suitable the Sérsic law is to describe the stellar
mass distribution of virtual ellipticals at higher redshifts. To make a proper comparison
between them a special attention in the fitting method is needed (see Section 4.5).
Specifically the outer boundary limit for the fit has proved to be a very important
parameter. For this reason we have decided to use the same criterion for all samples. We
have used the same projected stellar mass density limit 6.32x 1012M /M pc? used at z =
0 which was obtained from an observational resolution limit in blue band pup = 27 mag x
arcsec™2. Of course, at these redshifts this mass density limit translates into unavailable
values of observational resolution threshold. However this is the same procedure used in
recent studies that test the evolution of different fundamental parameters with redshift
(see for example Trujillo et al., 2007; van der Wel et al., 2008), but for a higher resolution
limit.

We have found that the projected mass density profiles of ELOs at redshifts z = 0.5,
z =1 and z = 1.5 can also be well fitted by a Sérsic law with similar x? values. In
Figure 8.4 we plot the mean shape parameter n versus the mean projected stellar half-
mass radius thﬁg and l.o.s. velocity dispersion Uls(g;{). In general, we can see that as we

go to higher redshifts our ELO samples have lower values of n and that this parameter

star

star (and therefore less massive).

shows a higher dispersion for ELOs with a smaller R
It is important to remark the good correlation between n and alsgsai) parameters at any
redshift. We have carried out a direct fit of the form: log(n) = Blog(x;) 4+ v for these
parameters. The slopes of these fits and their respective 95% confidence intervals are
given in Table 8.5. First conclusion from these results is that there can be a mild
evolution of these parameters in the samples. In order to clarify this issue we have
carried out same fits for the projected stellar mass, M CS;?I{DO along redshift. Results can
be found in Table 8.5. From these results we can conclude that the possible evolution
points out to more concentrated ELOs for a fixed mass as we go to higher redshifts.

This is in good agreement with the mild evolution discussed in previous Section.

Additionally, we have analyzed if a similar relation to the Photometric Plane exists
in our ELO samples involving the effective radius, the stellar mass and the Sérsic index.
We define it as the Structural Photometric Plane (SPhoP):

log RZ: = Alogn + Blog M&i,, + C. (8.2)

Orthogonal least square fits of Equation 8.2 for the EA and EF3-STAR samples at
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| EA-70 EA-70.5 EA-71 EA-71.5
noc (RET)P 0388 £0.134  0.462 + 0.246  0.540 + 0.319  0.361 + 0.521
noc (op2)”  0.823 +0.106  0.682 + 0.146  0.582 + 0.182  0.377 + 0.392

noc (Mg )P 0.330 £ 0.114  0.344 + 0159 0.454 + 0.155  0.556 + 0.285

Table 8.5: Slopes from direct fits and their respective 95% confidence intervals of the
shape parameter n and other Fundamental parameters up to z = 1.5.
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Figure 8.4: Shape parameter, n, versus different structural and kinematical Fundamen-
tal parameters since z < 1.5. Error bars account for projection effects.

different redshifts are shown in Table 8.6. FA-Z0 sample gives A%l = —0.30186;
Bt = 0.87653; CH¢t = —9.86211 0%\, ;o = 0.0556. In Figure 8.5 we plot the edge-on
projection of this plane (EA-Z0) for all the EA ELO samples at different redshifts. From
these results we have confirmed that the logarithms of n, Rffﬁé and M CS;?%O populate a
flattened ellipsoid close to a two-dimensional plane at any redshift up to z = 1.5. The
deviation between these planes as we go to higher redshifts could be explained by a
mild evolution of the Ry — MZ{, relation already mentioned in the previous section.
Table 8.6 also presents the orthogonal least square fits of the SPhoP for FF'1 and FF'3
samples. Although with slightly different slopes, we found that ELOs of these samples

lie in a SPhoP at all redshifts.

Finally, what is clear is that the Structural Photometric Plane puts a limit on the
values of the shape parameter, radius and mass at any redshift. Present results show
that the Photometric Plane could be an interesting alternative tool for the study of

elliptical galaxies at least up to z ~ 1.5 instead of the Fundamental Plane, that requires
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a heavy amount of time for measuring velocity dispersions.
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Figure 8.5: The Structural Photometric Plane for the EA sample at different redshifts.
Error bars account for projection effects.
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[ Sample #  AFA BEA CEA M Xo X3 oiRE
EA-Z0 26 -0.30186 0.87653 -9.86211 0.12992 0.010797 0.003091 0.0556
EA-70.5 19 0.08668 0.52395 -5.29105 0.13307 0.017580 0.005699 0.0755
EA-71 23 -0.52376 0.76243 -7.52051  0.08398 0.016350 0.004481 0.0669
EA-71.5 16 -0.69873 1.15367 -11.71195 0.05981 0.011577 0.007786 0.0882
EF1-70 21 -0.41220 0.79899 -8.22228 0.22673 0.014084 0.002462 0.0496
EF1-STAR-Z0 31 -0.31867 0.75837 -7.70990 0.16490 0.019999 0.002774 0.0527
EF1-STAR-Z0.5 25 0.07537 0.35217 -3.51303 0.08313 0.018030 0.002646 0.0514
EF1-STAR-Z1 22 -0.49517 0.67825 -6.73783 0.04681 0.008310 0.006083 0.0780
EF1-STAR-Z1.5 18 -0.50476 0.52369 -5.10680 0.12102 0.065926 0.002531 0.0503
EF3-70 11 -0.49447 0.80827 -8.03058 0.13885 0.027877 0.003712 0.0609
EF3-71 8 -0.10306 0.34100 -3.32734 0.03570 0.006471 0.000483 0.0220
EF3-STAR-Z0 22 -0.25006 0.74982 -7.58819 0.11996 0.027059 0.005245 0.0724
EF3-STAR-Z1 14 -0.18301 0.23100 -2.10632 0.03732 0.016548 0.002944 0.0543

Table 8.6: Principal component analysis of mass, radius and dispersion velocity for FA, FF'1 and EF3 simulations. Column 2: number
of objects in the sample. Columns 3, 4 and 5: coefficients of Equation 8.2 at each z. Columns 6, 7 and 8: eigenvalues of the correlation

matrix. Columns 9: rms orthogonal scatter of the photometric plane at each z.
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8.4 Other Structural and Kinematical Parameters

In this section we show some important results concerning the evolution of different
relations between structural and kinematical parameters studied in Chapters 5 and 6.
In the upper left panel of Figure 8.6 we plot, for the FA samplesat z =0, 2 =0.5, 2 =1
and z = 1.5, the slopes obtained from a power law fit of the total mass density profiles
(p(r) o r=7, see Section 5.2.5 for more details on the method). We do not find any
evolution trend for these slopes, confirming that all the mass components combine to
make almost an isothermal profile at any redshift. Moreover, in the upper right panel of
Figure 8.6 we present the ratio between the total virial mass, My, and the stellar mass,
M for the same ELO samples. The dependence of this ratio with the stellar mass is
one of the main factors that explains the tilt of the Fundamental Plane in ELO samples
(see Sections 6.2 and 8.2). Slopes from log-log direct fits for this relation can be found
in Tables 8.2, 8.3 and 8.4 (Byi; parameter) for FA, EB and EF'3 samples respectively.
Although we obtain a possible decrease of the slopes as we go to lower redshifts, the
statistical errors (95% confidence level) still allow the non evolution possibility. Lower
left panel of Figure 8.6 shows another interesting result regarding the structure of ELOs
along redshift. In this plot we can see the M33™ /Mo (< R3Er) ratios introduced in
Section 5.2.4 for the FA samples at higher redshifts. We observe a small trend, especially
for more massive ELOs, pointing towards an increase of the fraction of dark-to-total
mass at the effective radius as we go to lower redshifts. This result indicates that for a
fixed stellar mass, the stellar component at the ELO scale is less concentrated as we move
to lower redshifts (see previous results in Section 8.2 and discussion in 8.6). Finally, the
lower right panel confirms the extremely good correlation at any redshift between the
virial mass, My, and the central stellar line-of-sight velocity dispersion, O-IS(ES,B' However
it is important to remark that the dispersion in this correlation increases if we include
ELOs which are not really isolated up to the virial scale, i.e., they are suffering a merger

at this scale and still have not reached an equilibrium state.
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8.5 The Rotation versus Shape Diagram

In this section we continue with the analysis started in Chapter 7 of the relation between
the shape and the rotational support of elliptical galaxies at z = 0 and study the
evolution of this relation up to z = 1.5 for our different samples. We will show that
all of them share some interesting general trends. In order to have better statistics
we present in next section the results of a total sample formed by joining FA-STAR,
EF1-STAR and EF2-STAR samples (see Section 4.4). A proper description on how the

different parameters studied in this section are calculated can be found in Section 4.5.

8.5.1 Shape and Kinematics of Elliptical Galaxies: Evolution Due to
Merging at z<1.5
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ABSTRACT

Aims. We investigate the evolution in the shape and kinematics of elliptical galaxies in a cosmological framework.

Methods. We identified relaxed, elliptical-like objects (ELOs) at redshifts z = 0, z = 0.5,z = | and z =

1.5 within a set of

hydrodynamic, self-consistent simulations completed for a concordance cosmological model.

Results. The population of elliptical systems that we analysed evolve systematically with time becoming rounder in general by z = 0
and also more velocity dispersion supported. We found that this is due primarily to major dry mergers where only a modest amount
of angular momentum is involved in the merger event. Despite the general trend, in a significant number of cases the merger event
involves a relatively high amount of specific angular momentum, which causes the system in general to acquire higher rotational
support and/or a more oblate shape. These evolutionary patterns persist when we study our systems in projection, in simulating true
observations, and thus should be evident in future observations.

Key words. Galaxies: elliptical and lenticular, cD — Galaxies: fundamental parameters — Galaxies: interactions — Galaxies: Evolution

— Galaxies: Formation — Galaxies: kinematics and dynamics

1. Introduction

Surveys of high-redshift galaxies suggest that some relaxed,
massive elliptical galaxies may already be in place atz ~ 2 — 1.5
(Cimatti et al. 2004; Conselice et al. 2007), or even by z ~ 5
(Wiklind et al. 2008). These results notwithstanding, according
to current formation scenarios, merging has played an important
role in the mass assembly of most of the local massive ellipti-
cal galaxies. Observations and theory suggest that, first, violent
mergers at high z have transformed most of the available gas into
stars, and, later on, these systems might have evolved through
gas-free (the so-called dry) mergers (Conselice 2006; see other-
wise Scarlata et al. 2007).

Since the study by Bertola & Cappacioli (1975), we know
that elliptical galaxies are supported against gravity by random
motions as well as rotation. Davies et al. (1983) studied the now
classical V., /0, versus € diagram for spheroids (Illingworth
1977; Binney 1978), where V. is the maximum of the line-of-
sight (l.o.s.) rotation curve, o, is the central l.o.s. velocity dis-
persion of the galaxy, and € is the mean ellipticity inside a given
radius. They found that luminous (and massive) elliptical galax-
ies were characterised by low V,,,,/0, and a fairly circular mor-
phology (low €), while ellipticals with intermediate luminosity
tend to have higher values of both V,,,, /0, and e. Several ob-
servations involving 1D spectroscopy of near by elliptical galax-
ies (Lauer 1985; Bender 1988; Nieto et al. 1989; Bender et al.
1994; Pellegrini 2005; Lauer et al. 2005), and 2D spectroscopy
confirmed this characteristics for ellipticals (see Emsellem et
al. 2007 and Cappellari et al. 2007, hereafter CAP07). Van der
Marel & van Dokkum (2007) presented evidence of evolution
in the rotation support of elliptical systems since z=0.5. Present
formation schemes should be capable of explaining these obser-

Send offprint requests to: c.gonzalezgarcia@uam.es

vations of the kinematics and shapes of elliptical galaxies and
their possible evolution.

A number of N-body simulations of isolated galaxy merg-
ers have dealt with the population of the classical diagram
and the formation of boxy and disky objects (Naab & Burkert
2003; Gonzalez-Garcia & Balcells 2005; Gonzdlez-Garcia &
van Albada 2005; Naab, Khochfar & Burkert et al. 2006;
Bournaud et al. 2005; Robertson et al. 2006; Cox et al. 2006;
Gonzilez-Garcia et al. 2006; Jesseit et al. 2007; Naab & Ostriker
2007). These studies indicate that mergers between disk galax-
ies tend to produce too high rotational support when compared
with present-day massive elliptical galaxies. Mergers between
elliptical galaxies have indeed been shown to reproduce the ob-
served characteristics of massive ellipticals. Khochfar & Burkert
(2003) and Kang et al. (2007) (and references therein) presented
the first attempts by semi-analytical modelling to recreate the
kinematics and shapes of early-type galaxies. Naab et al. (2007)
studied the formation of three massive galaxies from cosmolog-
ical initial conditions. However, a detailed, statistical analysis
of the internal kinematics and shapes of objects formed in fully
self-consistent cosmological simulations and their possible evo-
lution is, to the best of our knowledge, still missing yet manda-
tory in providing a clear picture of the mechanisms at play in the
formation and evolution of present day Ellipticals (E’s).

In this paper, we present the results of self-consistent cosmo-
logical simulations that we developed to investigate the shape
and kinematical evolution of elliptical-like objects (hereafter
ELOs) at several redshifts. In the present analysis, we consider
both three-dimensional (hereafter, 3D) and projected data on the
sky. Other kinematic parameters proposed will be investigated in
a forthcoming paper, and are omitted from the present study for
the sake of simplicity.
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2. Methods and numerical experiments
2.1. Simulations

We completed seven hydrodynamical simulations in the context
of a concordance cosmological model (Spergel et al. 2006). For
five of the simulations, we employed a 10 Mpc side periodic box
with flat ACDM cosmological model, with # = 0.65, Q,, = 0.35
and Q;, = 0.06. To set the initial conditions, we employed the
algorithm developed by Couchman (1991) with a slightly high
normalisation parameter input og = 1.18, compared to the av-
erage fluctuations, to mimic an active region of the Universe
(Evrard, Silk & Szalay 1990). These simulations represented the
A-sample in Ofiorbe et al. (2005, 2006, 2007) and they differ
from each other in the seed used to generate the initial condi-
tions.

To test whether the evolutionary trends found in these simu-
lations are robust, we executed two simulations with a box side
twice as long as in the first simulations and a factor of 8 higher
number of particles, for the same cosmology as before, now us-
ing input values og = 0.75 and 0.95. The first of these values is
such that the initial distribution of kinetic energy per unit vol-
ume is similar to that in the small box simulations (Gelb &
Bertschinger 1994; Sirko 2005; Power & Knebe 2006). To ex-
ecute the small and larger box simulations, we used respectively
DEVA (Serna, Dominguez-Tenreiro & Saiz, 2003) and P-DEVA
(its OpenMP version, see Serna et al., in preparation), which
are two Lagrangian SPH-AP3M codes. The mass resolution is
1.28 x 108M,, for dark-matter particles and 2.67 x 10’M, for
baryon particles. Star-formation (SF) processes were includedin
terms of a simple phenomenological parametrisation (Katz 1992,
see also Serna et al. 2003 and Ofiorbe et al. 2007 for details).

‘We applied a consistency test by executing two simulations
with identical initial conditions in a 10Mpc side periodic box,
one containing 2 x 643 particles and a second containing 2 x 1283
particles, with masses as above for the 2 x 643 simulation and
1.6x 107 M, for dark-matter particles and 3.3x 10°M,, for baryon
particles in the 2 x 1283 simulation.

Galaxy-like objects of different morphologies appear in the
simulations. ELOs were identified as those having a promi-
nent, relaxed spheroidal component, consisting of stars, with
no extended discs. These baryonic objects are embedded in a
dark matter extended halo, typically 10 times more massive. In
Ofiorbe et al. (2005, 2006), it was shown that these ELOs satisfy
dynamical Fundamental Plane relations. In Ofiorbe et al. (2007),
the total, bright, and dark matter profiles of ELOs and their kine-
matics were analysed and found to be in satisfactory agreement
with observational data.

2.2. Methods and analyses

We analysed the ELOs at four redshifts: z = 1.5,z = 1.0,z = 0.5,
and z = 0. We selected undisturbed ELOs (i.e. within their limit-
ing radius, we observe a quasi-equilibrium behaviour of the sys-
tem) because we wanted to analyse their shapes, although their
dark matter halos could be in the first stages of merging. We
analysed those systems that at each redshift have more total stel-
lar mass than 2.6 x 10'°M. This limit agrees with Kauffmann
et al. (2003) for early-type galaxies, and the number of parti-
cles per ELO is sufficiently large to avoid resolution problems
(see below). In total, we have 425 ELOs (225 from the small
box simulations, and 200 from the large box simulations), 127 at
z=0,107atz=0.5,97atz=1.0,and 94 at z = 1.5.

To quantify the shape of the ELO, we measured the axis ra-
tios (c/a versus b/a, with a > b > ¢) of the ellipsoidal figures
defined by the particles inside rgp (the radius enclosing 90%
of the stellar mass of the system), by computing the eigenval-
ues of their inertia tensor (see Gonzilez-Garcia & van Albada
2005). To classify the shape of our objects, we used the tri-
axiality parameter introduced by de Zeeuw & Franx (1991),
T = (1 - (b/ay)/(1 — (c/a)®), in the following way: we intro-
duce the parameter s as s = 3 if ¢/a > 0.9 (close to spherical
objects), s = 2 if ¢c/a < 0.9 and T < 0.3 (oblate objects), s = O
if c/a < 0.9 and T > 0.7 (prolate objects), and s = 1 else-
where (triaxial objects). Concerning kinematics, we studied the
three dimensional velocity dispersion inside the effective radius
r.' (o3p), and considered the mean tangential velocity at r = r,,
(V). We also studied these characteristics at rog.

To compare with classical observations, we investigated the
line-of-sight rotation and velocity dispersion measurements to
one projected effective radius (R,) for each object. We chose
a point of view perpendicular to the spin angular momentum
vector of the stellar matter because these particular points of
view should maximise the effects of rotation when evident (see
Binney 2005, and Burkert & Naab 2005). We first derived the
ellipticity of each ELO by projecting the complete particle dis-
tribution onto a plane perpendicular to the line-of-sight. Local
surface densities were then computed following a logarithmic
binning of space. Ellipses were fitted to the ELO isophotes, as
performed for observational data. The ellipticity computed in our
analysis was taken to be the mean of the ellipticities inside one
R,. Although the number of particles may not be very high in
some objects, the signal at half the mass radii in projection is
sufficiently high to calculate these values. We performed con-
sistency tests with methods based on a diagonalization of the
moment-of-inertia tensors, and values were consistent with each
other. To derive the line-of-sight rotation and velocity dispersion
profiles, we placed a slit along the major axis of the projected
system (as obtained in the previous step) and projected the veloc-
ities of each particle along the line of sight. From these curves,
we finally derived the central 1.0.s. velocity dispersion (o7,) and
the maximum of the velocity curve inside R, (Vyq)-

To understand the physical processes underlying the shape
and rotation-support changes, for each of the 127 ELOs at z = 0
we compiled its mass aggregation track (MAT) along the main
branch of its merger tree, for both its baryonic (the mass inside
fixed radii) and total mass (the virial mass). These MATSs pro-
vide information about the mass assembly processes with time.
Major mergers (MM; M econdary/ Mprimary > 0.25), minor merg-
ers (mM), and aggregation (i.e. smooth in-fall of mostly gaseous
material) processes can be clearly identified. We can also com-
pute the amount of dissipation involved in the different processes
as well as estimate the amount of angular momentum involved.
Complementary information about a merger is provided by the
configurations shown, in a time interval around the merger event,
by the baryonic particles destined to form the ELO later on, i.e.
the type and number of objects involved, and the environment.
This way we analysed 150 events of any type along the main
branch of the merger tree at z < 1.5, and classified them into
several categories: mM or MM; binary or multiple; or involving
a high or a low amount of specific angular momentum (and their
combinations).

! r, is the radius enclosing half of the stellar mass of the system
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Fig. 1. Left: Star formation history of the most (top) and least (bottom) massive ELOs for the test simulations with 2 x 643 particles (solid green
line) and 2 x 128? particles (dotted black line). Right, comparison of the kinematic (top) and shape (bottom) observables. The most massive system
is the marked with a triangle and the least massive with an hexagon. For details, see text.

2.3. Consistency checks

Figure 1 shows the results of the consistency simulations.
Figure 1 (left panel) shows the star-formation history of two ob-
jects, the most and least massive ELOs in the simulations. The
black dotted line and the solid green line depict the results of
the simulations with more and less particles, respectively. We
found small differences, especially at early times, although the
two systems display general similar behaviour, and at high cos-
mic times (low redshift) no significant differences are evident. A
similar test was completed by Naab et al. (2007) and, although
the numerical approaches differ, it is reassuring to also find con-
vergence in this resolution test.

Figure 1 (right panel) presents comparative results of the
same objects at z = 0 in the two simulations where we com-
puted the observables introduced above on shape and kinemat-
ics. The systems appear to be stable and agreement between the
simulations results is good, although one object does exhibit a
significant difference. This system is not the least massive in
these simulations and the difference is due to the peculiar way
in which the V;; parameter is measured, such that particles at dif-
ferent radii are considered. The overall consistency in these tests
prompt us to use the 2 X 64° simulations for the sake of comput-
ing time.

3. Results
3.1. Shape and kinematic evolution

Figure 2, top row, shows the shape for the 4 redshifts, presented
in different colours. Figure 2 (a) shows c/a versus b/a. Blue
symbols (z > 1) appear mostly in the middle-left of the diagram,
while red symbols (z = 0) appear in the top right, that is, the
values of ¢/a and b/a tend to increase with decreasing redshift,
or in summary, the population of ELOs become rounder on aver-
age with time. These results hold when we use r, instead of rgg to

calculate inertia tensors, although in this case ELOs tend to ap-
pear even rounder. Figure 2 (b) shows a histogram for the shape
parameter s defined above. Results are given in relative numbers,
and the error bars express the Poissonian noise. Most of our sys-
tems are triaxial objects at all redshifts, except at z > 1 when
there is a fair amount of prolate systems. For all the simulations
we consider here, the fraction of prolate objects decreases with
decreasing redshift, and at all redshifts there is a small number
of perfect spheres. The number of triaxial and oblate objects also
increases with decreasing redshift. It is noteworthy that our re-
sults on ELO shapes at z = 0 compare reasonably well with those
obtained from the Sloan survey for elliptical galaxies (Kimm &
Yi 2007), where they show that the sample consists of about 45%
triaxial objects and around 26 — 29% prolate and oblate objects.

Figure 2 (c), illustrates the rotational support of the ELOs.
The histograms are normalised to their total number at each red-
shift, and the error bars represent the Poissonian noise. There is
a trend towards increasing the number of systems with a lower
value of Vj;/03p as z decreases; this trend appears independently
of the details of the simulation. Figure 2 (d) shows the diagram
of V4 /o3p versus e3p, where esp = 1 — ¢/a. Blue objects (z > 1)
appear mostly again at high e;p values with a broad range of
Vg/o3p values, while at z = 0 (red symbols), e3sp and Vy/03p
are smaller on average. These trends persist if we use rgg instead
of r, (i.e., we measure external rotation instead of rotational sup-
port), although in this case there is a higher fraction of systems
with higher values of V/03p.

We performed Kolmogorov-Smirnov tests to check whether
the samples at different z’s originate for the same distribution.
Such null hypotheses can be ruled out in all cases, both for
shapes and rotational support, at confidence levels of between
95 and 99.9 %. Given the consistency in the direction of the
more frequent changes (i.e., towards becoming ‘rounder’ and
more pressure-supported), we refer to these changes as an evo-
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Fig. 2. (a) Axis ratios of the spheroids. Colours indicate the different redshits. Crosses are objects more massive than M, > 1x10''Mj, circles
are objects of lower mass. (b) Histograms of the shape parameter S vs. relative number for all our systems. Different lines and colours indicate
the histograms for the four redshift bins. (c) Histograms of the rotational support measured as V/om3p (at r,) in relative number for our systems,
colours and lines as in (b). (d) Vs/03p vs. ep for the ELOs, colours and symbols as in (a) panel. Black solid line indicates the locus for oblate

rotators. For details, see text.

lutionary track. We emphasise that this evolution concerns the
global population of E’s rather than individual ones.

‘We now consider the 2D analysis. First of all, there is reason-
able agreement between the 3D and the projected kinematics,
i.e. the rapidly rotating systems are in agreement in both sam-
ples. Also, objects with higher values of c¢/a (~ 1) tend to be
those with the smaller €, while the larger ellipticities are found
among those objects with lower ¢/a. This correlation between
3D and 2D results for ELOs is noteworthy because it implies

that the intrinsic evolution detected in virtual systems, should
also be detected in observational (projected) data, if it occurs in
true elliptical galaxies.

Figure 3 presents the results for the classical V,,,./07, versus
€ diagram (Davies et al. 1983). For the sake of clarity, we plot
only the most massive objects M, > 1x10''My of the small-
sized simulations and the values are measured from a point of
view perpendicular to the angular momentum vector. Each ob-
ject is indicated by an open symbol, the colour representing the
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Fig. 3. V,u:/ 0, vs. € diagram. The black solid curve gives the locus of
the oblate rotators (Binney 1978). Only models with M, > 1x10''"M,
are plotted. Colours are as in Fig 2. Filled circles give a mean for the
objects at each redshift. Finally the size of the symbol gives the accu-
mulated number of major mergers that a system has undergone.

redshift of that object. At high z (light and dark blue), ELOs tend
to appear as more flattened systems with a high relative rotation.
However, at lower redshifts (green and red), we have more mas-
sive systems, which tend to appear rounder and more pressure-
supported (except those few with high V4/o3p), in agreement
with the 3D data (see Fig. 2(d)). The filled circles indicate the
mean of the distribution at each redshift and the error bars are
a measure of the standard deviation in the distribution. The sys-
tems evolve on average from being flat and relatively rotation-
ally supported to being rounder/triaxial and pressure-supported
systems. Finally, we note that if we include all systems in this
plot, the evolution still holds. The size of the open symbols in
Fig. 3 is a measure of the accumulated number of major merg-
ers that the system has undergone since z = 1.5. Larger sym-
bols are mostly located in the lower left part of the diagram.
This indicates that merging is one of the key ingredients driv-
ing this evolution towards rounder and more pressure-supported
ELOs. Although this is the general trend, we also note that there
are some cases with high V,,,./0, and a significant number of
mergers, and this indicates that merging effects could be far more
complex.

It has been argued (Binney 2005; Burkert & Naab 2005;
CAPOQ7) that the V,,./0, versus e diagram is affected by pro-
jection effects. The results presented in Fig. 3 are obtained by
looking at each object from a point of view perpendicular to the
angular momentum vector. For oblate rotators, this vector should
be close to the short principal axis, and the projected image
would provide the maximum ellipticity and V,,,/0,. However,
many of our most massive systems are triaxial and the angu-
lar momentum vector has neither to coincide or be close to the
short principal axis. In these cases, the V,,./0, diagram could
be affected by projection effects. To test the effects of projection
we have analysied the systems along 100 randomly chosen lines
of sight, deriving the projected observables of the classical di-
agram. We obtained a distribution of points, which in the case
of the most massive ELOs did not differ significantly from the
points presented in Fig. 3. We tested the null hypothesis that the
distributions of points at the different redshifts originate in the

interval. Red line gives the rate for minor mergers. Green line gives the
rate for major mergers. We observe a decline in the number of mergers,
this decline is slightly steeper in the fraction of MM.

same distribution by completing a Kolmogorov-Smirnov test.
The result is that we can exclude this hypothesis at the 99.9%
confidence level. The same result is obtained by a Kuiper test.
We conclude that the results presented are robust and that the
evolution observed in the projected quantities in shape and kine-
matics is indeed real.

3.2. Merging rate

To understand how merging affects evolution, we carefully stud-
ied and classified all the merger events along the MATSs of the
127 ELOs identified at z = 0.

We investigated the number of mergers in three redshift in-
tervals z € (1.5,1); (1,0.5) and (0.5,0). We were particularly
interested in the mergers experienced by our ELOs. We inves-
tigated the main branch of the ELO merger tree and looked at
the mass aggregation track to identify increments in mass. We
identified major mergers (MM) and minor mergers (mM). For
the three redshift intervals, we identified 21, 23, and 23 MMs,
and 20, 22, and 36 mMs. Figure 4 shows the evolution in the
merger rate since z = 1.5 for the three redshift bins. The merger
rate is expressed in terms of the number of mergers per galaxy
per gigayear. We measured a decrease in the number of mergers,
which is more pronounced in the MM fraction than in mM.

We note that this result concerns the number of mergers ex-
perienced by the ELOs in our sample only along the main branch
of their merger tree. Also, we analysed the high-mass end of
the galaxy mass distribution, not taking into account mergers re-
sulting in disk-like systems or systems of smaller mass. Despite
these caveats, we compared these numbers with recent theoret-
ical results. Naab et al. (2007) performed cosmological simu-
lations including gas, cooling, and star formation to investigate
the formation of three systems, two resembling true elliptical
galaxies and a third resembling an SO galaxy. They found that
at z < 1, the systems have experienced few merger events, with
one major merger in one case and a minor merger in another
one. Scannapieco et al. (2008) used results from the Aquarius
simulations (Springel et al. 2008) to investigate the survival of
disks. The number of mergers is an important aspect in estimat-
ing the impact of merging in the survival of disks. They found
that the disks have suffered a moderate number of mergers since
z = 2. Finally, using the Millennium simulation Genel et al.
(2008; 2009) found that since z = 2.2, the number of MM expe-
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rienced by a halo of mass M in the redshift interval z; and z; can
be approximated by N (zi, 25, M) =~ 0.13{log[M/(10'° M)] +
1}(zi = zy). Our simulations predict slightly higher values of this
parameter, perhaps related to the active environment conditions
modelled in our runs. However, we found that the results are in
agreement with Fig. 8 of Genel et al. (2009) and our numbers are
consistent with these theoretical works. Finally, Conselice et al.
(2009) studied the merger history of a large number of galaxies
for z < 1.2. Our results here are again in good agreement with
those presented in their Fig.7 for observational results.

3.3. Trends of merger characteristics with time

At high z (z > 1.5), dissipative, multiple MMs are more frequent
than other merger types. At z < 1.5, most mergers are rather dry
(ELOs are mostly devoid of gas, with percentages of less than a
few percent), with a higher frequency of low angular-momentum
MM compared to high angular-momentum MMs (a frequency
of ~ 2 : 1). Most mergers involving a fair amount of specific
angular momentum are multiple events. However, the opposite
is not true, since there are multiple events where only a small
amount of angular momentum is involved, and particularly so at
z>1.5.

4. Discussion

We have compared the merger characteristics with the changes
measured in shape and rotational support. We have found that
there is a close correlation between the shape and the amount of
rotational support of a given ELO at a given time and the char-
acteristics of the last merger event it has suffered. Specifically,
MMs always produce changes in both shape and rotational sup-
port in the outer and the inner parts. MMs with little angular
momentum most often decrease the rotational support inside r,,
producing mostly rounder (i.e., a larger value of ¢/a) prolate
spheroids, while MMs with a high (intermediate) amount of an-
gular momentum increase rotational support, producing oblate
or triaxial systems. This picture of the role of angular momen-
tum is consistent with the transformation found in binary merg-
ers of spheroidal systems by Gonzdlez-Garcia & van Albada
(2005). mMs most often produce triaxial or oblate spheroids
and increase the rotational support, although the effect is most
likely to affect the outer parts of the ELO (see Balcells & Quinn
1990, Eliche-Moral et al. 2006), except for penetrating mMs.
Finally, aggregation processes are also important and may affect
the shape and kinematics of the final object. We have found that
around 85% of the changes in both shape and rotational support
are associated with merging (in contrast to aggregation).

Combining these findings on the trends of merger character-
istics with time and the different effects a merger causes accord-
ing to these characteristics, we can understand that prolate ELOs
are the most frequent at high z, and they are then transformed
most often into rounder triaxial objects with less rotational sup-
port. An interesting conclusion from this study is that, due to
dry merging, the most luminous (i.e. massive) ellipticals must
be rounder and in general less rotationally supported. Indeed,
this is what is found in observational data (see e.g., Davies et al.
1983).

The results presented here are not intended to represent fully
at a quantitative level the characteristics of the shape and kine-
matic evolution of elliptical galaxies, but rather to unveil some
qualitative trends in dense environments and the mechanisms
causing them in a cosmological context. It is reassuring to find

that all the simulations analysed here show in general an evo-
lution in the population of E’s towards roundish and less rota-
tionally supported systems, mostly driven by dry merging, and
that the mechanisms at play described above, which cause either
the general trend or the exceptions, are consistent in all kind of
simulations, of different box size, particle number, input g, and
code.

Van der Marel & van Dokkum (2007) reported a similar evo-
lution for two samples of ~ 40 galaxies at z = 0.5 and z = 0.
Although the evolution that we observe in our simulations seems
milder than the one reported by their study, the amount of evolu-
tion remains unclear to higher redshifts. Thus, it would be highly
desirable to perform larger statistical studies of the shape and
kinematics of true elliptical galaxies at low z, and acquire obser-
vations of galaxy kinematics at higher redshifts to confirm the
evolutionary trend of ellipticals predicted here.
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8.5.1.1 Consistency Checks

In this Section we present results from the different samples studied in this work regard-
ing the evolution of shape and rotational support of ELO samples. Figure 8.7 present
the evolution of the Shape parameter, S, inside the radius enclosing 90% of the stel-
lar mass, 7"3%67‘{)0, for FA-STAR, EB-STAR, EF1-STAR and EF3-STAR samples. All
these samples show the same general trends pointed out in the previous section. For
all simulations, the fraction of prolate objects decreases with decreasing redshift, and
at all redshifts there is a small number of perfect spheres. The number of triaxial and
oblate objects also increases with decreasing redshift. Same conclusions arise if we use
the Shape parameter calculated at rztﬁg Figure 8.8 illustrates the rotational support of
the ELOs for FA-STAR, EB-STAR, EF1-STAR and EF3-STAR samples. The general
trend discussed in previous section towards the increase of the number of systems with

a lower rotational support as we go to lower redshifts is confirmed for all these samples.



200 Chapter 8. Evolution of Ellipticals since z<1.5
PROLATE  TRIAXIAL _ OBLATE _ SPHERE PROLATE  TRIAXIAL _ OBLATE  SPHERE
B e A B

z=15 | z=1.5 |
---z=1.0 ---z=1.0
——2=0.5 ——2z=0.5
0.8 - —2z=0" - 0.8 - ‘ —2-0
0.6 - : e 0.6 - i e
1
= 1 ° T { : ‘
b
= | e S R e 5
o4l 1] ‘+I e Y S I kT -
. , — :
] | e
| | v L 1
1 1
l P - 1 1
0.2 F l | g o2f | Lo oo -
Eh ke : .
: S B N
-
ol v v v s 0 P B
z_ 4 2 4
star star
S (<1"90'b0) S (<r90,b0)
, _PROLATE _ TRIAXIAL _ OBLATE _ SPHERE , _PROLATE _ TRIAXIAL _ OBLATE _ SPHERE
T ) B i T
i z=15 | z=1.5
! ---2=10 ---2=10
I , —-z=0.5 ——z=0.5
o8 f 1 ! —z=0 0.8 |- —z=0 7
b
H
v
0.6 - e 06 e
PFt- e
S H S
z } z, :
0.4 | l II . 041 .
| E»/Hﬁ o !
' . l I 1
1 1 ‘ B 1
1 o, | |
0.2 [ | TI — 0.2 ! .
1 1 T
T N
1 -4
ol v v v e b ol v v v vy
z_ 4 2 4
ar star
S (<1"§0'b0) S (<r90,bo)

Figure 8.7: 3D Shape histogram, S, of the FA-STAR (upper left), EB-STAR (upper
right), EF1-STAR (lower left) and EF3-STAR (lower right) samples at different red-
shifts calculated for the r§if = using Equation 7.2. The histograms are normalized to
their total number at each fedshift, and the error bars represent the Poissonian noise.
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The histograms are normal-

ized to their total number at each redshift, and the error bars represent the Poissonian

noise.
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8.6 Conclusions

In this Chapter we have studied up to z = 1.5 the different fundamental relations
presented in previous Chapters at z = 0: The Fundamental Plane, The Photometric

Plane and the relation between shape and rotational support.

The Fundamental Plane

The results we report on the evolution of the Fundamental Plane indicate that ELOs
conform a homogeneous population at any redshift. The preservation of the dynamical
plane in these redshifts for our simulations also agrees with previous work based on
dissipationless simulations of pre-prepared mergers (Capelato et al., 1995; Dantas et al.,
2003; Gonzalez-Garcia & van Albada, 2003; Nipoti et al., 2003; Boylan-Kolchin et al.,
2005). This result explains the preservation of the Fundamental Plane with 2z when
seen in the edge-on projection. A mild evolution is also found indicating that high z
ELOs could be, more compact and have a higher velocity dispersion, than their lower
z counterparts. The interpretation of these trends could be linked with the amount of
dissipation that each ELO has suffered along its mass assembly.

Concerning the tilt of the Fundamental Plane relative to the virial relation at higher
redshifts, it has shown a similar origin as we found at z = 0: By # 0 Srq # 0 (Chap-
ter 6). Our simulations point out that the physical origin of the trends above lie in the
systematic decrease, with increasing ELO mass, of the relative amount of dissipation
experienced by the baryonic mass component along ELO stellar mass assembly. We
observed an evolution trend of 3y, parameter towards an increase of the contribution of
the My /Mggar ratio in the tilt of the Fundamental Plane as we go to higher redshifts.
On the other side, 5,q contribution is not statistically confirmed (nor discarded) in all

samples.

The Photometric Plane

We have found that the projected mass density profiles of ELOs at different redshifts

can be well fitted by a Sérsic law. We also obtain a good comparison with observational

star . star .
n vs McyLbO ;MVS 07080 R

star .

star star .
e,bo M,

scaling relations up to z ~ 1.5: n vs R ebo V8 Mo

M s;,ﬁm vs ot - This last correlation shows that ELOs of a given stellar mass become

less compact as z decreases, and that the higher the ELO mass and the more important

star

the difference. The Structural Photometric Plane, namely the relation between Ri¢,

Mg;ﬂm and n parameters, is found up to z = 1.5 in all the samples analyzed and
puts some strong limits on the structural values at any redshift. These results confirm
observational studies of La Barbera et al. (2005) for early-type galaxies at intermediate
redshifts.

From these results, one can arises with the wrong conclusion that individual objects
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do not evolve. The answer is that individual objects do evolve and that they do it
onto the Intrinsic Dynamical Plane. We have seen that some of the ancestors of the
EA-70 sample are found up to z = 1.5 in the Intrinsic Dynamical Plane and Structural
Photometric Plane that we found at z = 0. This implies that mergers between these two
redshifts keep the ELOs in the Fundamental Plane. These mergers are mostly gas-free.

Figure 8.9 shows an example of the evolution of an ELO in the shape parameter, n,

star
e,bo

some light in the question about if it is possible to obtain massive early-type galaxies

star

effective radius, r and stellar mass, M{:*". This is an important conclusion that put

from (dissipative or gas-free) mergers of galaxies (Aceves et al., 2006; Ciotti et al., 2007).
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Figure 8.9: Parameter evolution for an ELO analyzed at four different redshifts: z = 1.5
(green), z = 1.0 (cyan), z = 0.5 (orange) and z = 0 (black).

Rotation versus Shape

On the other hand, studying the rotational support and shape of a bigger sample of
ELOs, we found that a systematic change through time, i.e. evolution, by becoming
rounder in general at z = 0 and, at the same time more velocity dispersion supported.
This is found to be primarily due to major dry mergers where only a modest amount
of angular momentum is involved into the merger event. Despite the general trend,
in a significant amount of cases the merger event involves a higher specific angular
momentum, which in general causes the system to acquire a higher rotational support
and/or a more oblate shape. These evolutionary patterns are still present when we study
our systems in projection, mimicking real observations, and thus they should become
apparent in future observations.

We have seen that relaxed ELO samples show a mild evolution in their structural

and kinematical parameters that describe their 3D (MEr rS02r o5t and p) and 2D

(M g;iﬁoo,RZfﬁg,Jng;B and n) mass and velocity distributions. On the other hand, shape
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() and rotational support (Vipax/oi2t)) show clear signs of evolution. These results are

not in disagreement between each other because these parameters characterize different
properties of ELOs. In the case of shape and rotation for elliptical galaxies, the specific
value of these parameters is more related with the particular history of the ELO as they
are heavily linked with the dynamical events in which the ELO has been involved along
its mass assembly and especially by the last one of these events. In the first case, this
assembly process seems to be erased from the structural and kinematical properties of
the ELO, but for a mild evolution observed for the more massive ELOs. Therefore we
conclude that these parameters provide a more detailed description for relaxed ELOs.
This is not very surprising because equilibrium states do not depend on how the paths
leading to them. Manrique et al. (2003) have analytically probed a similar result for dark
matter halos. In their model, the density profile of relaxed halos permanently adapts to
the profile currently building up through accretion and does not depend on their past
aggregation history. Therefore the typical density profile of halos of a given mass at a
given epoch is set by their time-evolving cosmology-dependent typical accretion rates.
As a consequence this model predicts the existence of time-invariant relations among the
structural parameters that describe these halos (See discussion in Salvador-Solé et al.,
2005, 2007). To try to put all these results under a common framework, we have to
study ELO assembly and its effect on ELO mass and velocity distributions, as well as

on the stellar age distributions. This is the subject of our next chapter.



Chapter 9

Galaxy Formation and Evolution
from DEVA Simulations!

9.1 Introduction

In the previous Chapters we have studied the fundamental structural and kinematical
properties of elliptical-like objects (ELOs) at redshift zero and their evolution since
z = 1.5. We have obtained some clues about how they are settled and we have seen that
they show a very good agreement with several classical observational relations. However
as discussed in Section 3.3 different observational results point to apparently paradoxical
results concerning the formation of elliptical galaxies. None of the formation scenarios
proposed (monolithical collapse or hierarchical mass assembly), can so far recover all
the observational information we have at our disposal on local ellipticals (downsizing
or age effects in their stellar populations; the tilt of the Fundamental Plane relation;
the presence blue cores), as well as at intermediate or high redshifts (the near-lack of
evolution of the FP in dynamical terms, among others).

The aim of this chapter is to describe a scenario arising from the simulations provid-
ing an explanation of the different results discussed in previous sections. To this end,
we have made use of the opportunity that brings us self-consistent simulations. This
is, to follow different physical processes relevant to elliptical formation along cosmic
time with a high enough time resolution: mass assembly, star formation and dissipation
rates, gas accretion history and their relation with different properties of galaxies.

The following section is devoted to the mass assembly history of simulated ellipticals
and its relation with the star formation and dissipation rates. It introduces a massive
galaxy formation model. Section 9.3 presents the results of a study on the links among

the gas infall rate history and the star formation rate history along mass assembly,

'Based on Dominguez-Tenreiro, Ofiorbe, Sdiz, Artal, & Serna (2006); Dominguez-Tenreiro, Ofiorbe,
Serna, & Gonzdlez-Garcia (2008); Gonzélez-Garcia, Ofiorbe, Dominguez-Tenreiro, & Gdémez-Flechoso
(2009)
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giving some important hints on how galaxies obtained its gas. Section 9.4 presents our

conclusions.

9.2 Insights into ELO Assembly

To try to decipher the physical processes underlying the formation and evolution of
simulated ellipticals, we have drawn their mass aggregation track (MAT) along the
main branch of the corresponding tree, both for baryonic (the mass inside fixed radii)
and for total mass (the virial mass).

For each ELO in the different samples analyzed, we have identified its constituent
particles (gaseous or stellar) at z = 0. Among them, the most tightly bound particle
has also been identified and used, altogether with a sigma-clipping algorithm (see Sec-
tion 4.3) to search for the center-of mass of the object in the previous timestep available
for the simulation. This process is repeated at different z’s, so that we can determine
the trajectory of the virtual elliptical center-of-mass across the time. Once we have the
virtual elliptical center at different z’s, the mass aggregation track (MAT) along the
main branch of the merger tree can be drawn. So, for each ELO in the samples, its
MAT has been drawn, both for its baryonic component (the mass inside fixed radii) and
for its dark matter halo mass (the mass inside the virial radii). Figure 9.1 shows some

examples.

104 —r—————————————————3 10" ——r—

—~~

> r
=101
~ E

, h{cggln)
r

dark
h -~
=1

T

, M

vira
o
s

T

M

—_
o
©

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

t/t, t/t,

Figure 9.1: The mass-aggregation track along the main branches of the merger tree, for
two typical ELOs. Left: a massive ELO. Right: a less massive ELO. Both panels give
the total mass of the halo (black) and dark matter (blue) at ryi,. Color lines stand for the
baryonic mass of the ELO at different fixed radii (3, 6, 9, 15, 21, 30 kpc). Discontinuities
represent merger events. In each of them we can differentiate fast (¢/¢, < 0.3) and slow
(t/t, 2 0.3) mass aggregation rates, corresponding to the fast and slow phase.

These MAT's inform us on the mass assembly process through time. Major merger
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can be clearly observed through a sudden increase of the stellar mass of a factor
M secondary /Mprimary < 0.25 while minor mergers imply a lower mass gain. Aggregation
(i.e. smooth in-fall of mostly gaseous material) processes can also be clearly identified.

The relative angular momentum involved in a given merger event can also be esti-
mated through the MAT at a qualitative level in the following way: Any merger process
begins with the halo fusion, then the virtual galaxies they host begin to orbit around
each other, until their final coalescence. The higher the relative angular momentum
involved in the merger, and the higher the time interval elapsed since the first halo con-
tact and the coalescence of the virtual galaxies (i.e., the baryonic components). This
time interval can be directly measured in the MATSs. Indeed, any mass entering into
the final virtual elliptical is first noticed in the halo mass as an increase in the virial
mass. Later on if the systems merge, such increase will be noticed as an increase in the
stellar mass. The difference in time between both moments may give us a qualitative
estimate of the orbital momentum involved in the merger (see for example the papers
by Gonzalez-Garcia & van Albada, 2003; Gonzélez-Garcia & Balcells, 2005).

We have also computed the star formation history of these objects taking into ac-
count all the stellar particles inside 7. Figure 9.2 shows two examples. The different
trends between stellar age properties observed in these Figures and the structural and

kinematical parameters have been discussed in Section 6.4 for ELOs.
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Figure 9.2: The star formation rate histories of two typical ELOs versus the Universe
age. Left: a massive ELO. Right: a less massive ELO. Note that most stars are formed
at high z, and the age effects according with the ELO mass.

All these analyses indicate that two different phases operate along ELO mass as-
sembly: first, a violent fast one, where the mass aggregation rates are high, and then, a
slower one, with lower mass aggregation rates. Results from analytical models, as well

as N-body simulations, have already pointed out this result (Wechsler et al., 2002; Zhao
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et al., 2003; Salvador-Solé et al., 2005). Here we have confirmed that this conclusion
holds also for the baryonic component (see De Lucia et al., 2006, for same results using

semi-analytical models).

9.2.1 The Two Phase Scenario

The simulations unveil the physical patterns of ELO mass assembly, energy dissipation
and star formation. These simulations indicate that ELOs are assembled out of the
mass elements that at high z are enclosed by those overdense regions R whose local
coalescence length L.(t, R) (Vergassola et al., 1994) grows much faster than average,
and whose mass scale (total mass enclosed by R, Mpg), is of the order of an E galaxy
virial mass.

These overdense regions act as flow convergence regions (FCRs hereafter), whose
baryon content defines the particles that will end up in a bound configuration forming
an ELO. FCRs contain a hierarchy of attraction basins toward which a fraction of the
matter flows feeding the clumps they host. Another fraction of the matter keeps diffuse
(Figures 9.3 and 9.4).

9.2.1.1 Physics of the Fast Phase

At a given scale, overdense regions first expand slower than average, then they turn
around and collapse through fast global compressions, involving the cellular structure
elements they enclose (Figure 9.4) and in particular nodes connected by filaments, that
experience fast head-on fusions (i.e., multiclump collapse, see Thomas et al., 1999).
Figures 9.3 and 9.1 . Our hydrodynamical simulations indicate that these fast head-on
mergers (that is, with very low relative orbital angular momentum) result in strong
shocks and high cooling rates of their gaseous component (i.e., dissipation), and, con-
sequently, in strong and very fast SF bursts (Figure 9.2) that transform most of the
available cold gas at the FCR into stars (Figures 9.3 and 9.4).

For the massive ELO in the Figures, this happens between z = 6 and z = 2.5
(Figures 9.1 and 9.2) and mainly corresponds to a cold mode of gas aggregation, as in
Keres et al. (2005, see next section for a detailed discussion on this issue). Consequently,
most of the dissipation involved in the mass assembly of a given ELO occurs in this
violent early phase at high z; moreover, its rate history? is reflected by the SF rate
history (Figure 9.5).

The age distribution of the stellar populations of ELOs shows age effects: their
means are lower and their widths are narrower for more massive ELOs than for less
massive ones (see section 6.4), as inferred from observations. At the end of this phase,

most stars are already formed, the ELOs are virialized and the Fundamental Plane is in

2That is, the amount of cooling per time unit experienced by those gas particles that at z = 0 form
the ELO stellar component
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Figure 9.3: This Figure shows projections, at different redshifts, of the baryonic particles
that at z = 0 form the stars of a typical massive ELO. Green: cold gas particles. Blue:
stellar particles. The redshift decreases from left to right and from top to bottom (z = 6,
z =3.5,z=2.2,z = 1). Note the clumpy collapse of two different FCRs between z = 3.5
and z = 2.2 (fast phase) with ELO formation, and their merging between z = 2.2 and
z =1 to give massive ELOs (slow phase).
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Figure 9.4: A projection of a 900 side box at z = 5.02. Red: stars. The other colors
mean gas density according with the code in the bar. This region will transform later
on into a virtual elliptical. At this high redshift we can appreciate the cellular structure,
the denser regions already turned into stars, and dense (cold) gas flowing towards the
node at the center of the FCR through filaments. Note also the presence of CHAIN
galaxies.
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place as a consequence of dissipation and homology breaking in the mass distribution
(see Chapters 6 and 8).
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Figure 9.5: The cooling rate history (green line) and the star formation rate history
(red line) of a typical ELO in the simulations. Its mass-aggregation tracks are also
shown, both for total mass (dash line) and for cold baryon mass (i.e., stars and cold
gas, point-dashed line). The fast (left) and slow (right) phases of mass aggregation are
clearly shown. Note that most dissipation and SF corresponds to the fast aggregation
phase and that the last major merger results in a rather modest SFB at t/ty = 0.72.

9.2.1.2 Physics of the Slow Phase

The slow phase comes after the multiclump collapse or fast phase. In this phase, the
halo mass aggregation rate is low and the M,;, increment results from major mergers,
minor mergers or continuous accretion. Our simulations show that the fusion rates are
generally low (see previous Chapter) and that these mergers generally imply only a

modest amount of energy dissipation or SF. In fact, a strong SF burst and dissipation
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Figure 9.6: z ~ 4: Fast phase is over. Gas flows still feed the center. Stellar system
concentrated at the center, low SFR dominated by minor mergers, and passive ageing
of older stars. Gas density and stellar age are shown in the upper left panel and upper
right panel respectively.
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follow a major merger only if enough gas is still available after the early violent phase.
This is unlikely in any case, and it becomes more and more unlikely as M,;. increases.
And so, these mergers imply only a modest amount of energy dissipation or SF. A
consequence of this behavior is that the dynamical plane is preserved at the slow phase.
In fact, we have found in our cosmological simulations that dissipationless merger events
increase the ELO mass content, the size and the stellar mean square velocity, but roughly
preserve the dynamical FP2. A second consequence of this behavior is the trend of the
means and the spreads of the ELO stellar age distributions with M,;;, that are consistent
with observations (see Dominguez-Tenreiro et al., 2004).

Apart from ELO stellar mass growth following dry mergers, our simulations indicate
that M can also increase due to newborn stars, either (1), formed within the ELO
itself from accreted gas or gas coming in satellites, that falls to the central regions before
being turned into stars, or (2), more unlikely, formed through dissipative mergers. While
the first implies quiescent modes of star formation (see Papovich et al., 2005), and could
explain the blue cores observed in some relaxed spheroids, both of them could explain
the need for a young stellar population to fit some of their spectra, see references above.
Major merger events become less frequent as time elapses, allowing for a higher fraction
of relaxed spheroids. Both, on-going stellar mass assembly (either accreting stellar mass
fragments or forming newborn stars) and the decrease of the major merger rate, imply
an increase of the stellar mass density contributed by relaxed ELOs. In fact, we find
that it has changed by a factor of 2.1 between z = 1 and z = 0, in consistency with
empirical estimations (see Section 3.3.1).

Our simulations indicate that the halo mass aggregation rate is low and that its
increment results from major mergers, minor mergers or continuous mass accretion.

So, our simulations suggest that most of the stars of today ellipticals, could have
formed at high redshifts while they are assembled later on (see De Lucia et al., 2006,
for similar results from a semi-analytic model of galaxy formation grafted to the Millen-
nium Simulation). This formation scenario shares some aspects of both, the hierarchical
merging and the monolithic collapse scenarios, but it has also significant differences,
mainly that most stars belonging to EGs form out of cold gas that had never been
shock heated at the halo virial temperature and then formed a disc, as the conventional
recipe for galaxy formation propounds (see discussion in Keres et al., 2005, and refer-
ences therein). An important point is that our simulations indicate that this formation
scenario follows from simple physical principles in the context of the current ACDM

scenario.

3The preservation of the FP in pre-prepared dissipationless mergers had already been studied by
Capelato et al. (1995); Gonzdlez-Garcia & van Albada (2003); Nipoti et al. (2003); Boylan-Kolchin
et al. (2005) through N-body simulations.
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Figure 9.7: A merger begins around z = 0.1 between two objects which are very gas-poor (left).

gas density and lower panels the stellar age according with the scales on the top of each image.
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Although the merger is dynamically very
violent, it produces only a very modest SFB. By z = 0 the merger is over and the ELO is almost relaxed (right). Upper panels show the
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9.3 Accreting and Expelling Gas in ELOs

Galaxy formation scenarios generally predict that galaxies are embedded into halos of
hot diffuse gas, extending well beyond the distribution of stars. These halos are thought
to consist of gravitationally trapped gas with a temperature of millions of Kelvin. It
is important to remark the difficulty of studying the structure of hot gas halos around
elliptical galaxies because it requires that they are as isolated as possible and this type
of galaxies (specially the most luminous) are usually in dense environments.

The new generation of X-ray instruments (Chandra, XMM) confirms and extends
previous findings in ellipticals. Recent Chandra measurements (Humphrey et al., 2006)
have determined their total baryon fractions inside their virial radii. These fractions
indicate that these systems, despite having masses > 5 x 10'2 M, are not baryonically
closed at virial radius, i.e., their baryon fraction is lower than the average cosmological
one (Spergel et al., 2007). Put in other words, ellipticals miss baryons inside their virial
radii. In this sense elliptical formation scenarios must answer the following questions:
How did hot gas halos form? Where and when is the gas heated? Why are ellipticals not
baryonically closed? Where the missing baryons are? In this Section we have deepen
into these questions using the results of hydrodynamical simulations and tested the

model presented above.

9.3.1 Hot Gas in ELOS

Irrespective of their mass, ELOs identified in the simulations have an X-ray emitting
hot gas halo. The X-ray surface brightness profiles and total X-Ray luminosities of
ELOs have been studied by Séiz et al. (2003) and they found an overall agreement with
observational data. We have already seen in Section 5.2.4 that these halos extend well
beyond their virial radii. Figure 9.8 shows these halos for 3 ELOs with different virial
masses. We can see that the temperature of the gas is linked with the mass and that

there are clear signs of substructure.

9.3.2 Baryon Fraction

An important point is the amount of gas infall relative to the halo mass scale. In
Section 5.2.4, we have studied the baryon space distribution at halo scales for ELOs at
z = 0 and obtained that the f2'(r) = p"(r)/p'°*(r) profiles show a typical pattern in
which their values are high at the center, then they decrease and have a minimum lower
than the global value (see Figure 5.13). We have measured the amount of baryonic
mass that it is inside the virial radii out of the total mass, M }L"‘“ /Miy at redshifts z = 0,
z=0.5,z=1, z= 1.5 for ELOs of the FA sample. Figure 9.9 shows the results. We
found that in any case this quantity is lower than the average cosmic fraction (0.171 for

the FA sample cosmological model), i.e., ELOs are not baryonically closed. This means
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Figure 9.8: Slice of 4 X 7y, side showing the gas temperature (in log K) for ELOs whose virial mass is
102 My, 5 x 101 M.

, from left to right, 3 x 1012Mg,1 x
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that there is a lack of baryons within r;, relative to the dark mass content that becomes
more important as M, increases and time elapses. By studying the hot gas profiles in
Section 5.2.4 we encountered that the baryons that ELOs miss inside the virial radius
are found at the outskirts of the configuration as diffuse hot gas (see Figure 5.14). In
the following section we will deepen into this issue and try to disentangle how these

baryons are heated.
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Figure 9.9: Baryon fraction at different redshifts for the FA samples

9.3.3 When and Where is the Hot Gas Heated?

Therefore heating processes along ELO assembly give rise to a hot gas halo around the
objects, partially beyond the virial radii. Figure 5.14 shows that the amount of hot
gas mass, normalized to the cold baryonic content inside the virial radii, increase with
mass. The mass of hot gas increases monotonically up to r ~ 4 X ry;;. This suggest that
the cold baryons massive ELOs miss inside r;, relative to less massive ones, appear as
diffuse warm component at the outskirts of their configurations.

According to the classical scenario, gas falling into a dark matter potential is shock
heated to the virial temperature at the virial radius, and forms a quasi-hydrostatic
equilibrium configuration with the dark matter. Shocked hot gas slowly cools and travels

inwards, forming the central cooled component (the galaxy) (White & Rees, 1978).
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However this scenario has recently been challenged by (Katz et al., 2003; Birnboim
& Dekel, 2003). These authors have found that only a fraction of the gas accreted
onto galaxies is shocked at virial radius (hot mode). The other fraction (cold mode)
is accreted onto a galaxy without ever being heated to high temperatures. This cold
accretion would owe its existence to the short cooling times present in low mass halos
near the virial radius, which prevents the development of a stable accretion shock. They
show that the cooling time condition corresponds approximately to a threshold in the
galaxy’s halo mass, with little dependence on redshift (see Keres et al., 2008; Dekel
et al., 2009, for last results on this topic).

To deepen into all these issues we have studied the evolution of the gas component
of ELOs. To this end we have used a simulation (8716, see Section 4.2 for more details)
for which we have a lot of timesteps saved, that allow us to perform high time resolution
analyses (At = 6.9x10% yr) . We have followed the density and temperature evolution of
each baryonic particle that form ELOs at z = 0 by splitting them into several categories
depending on their radii (1 < Tho, Tho < T < Tvir and ryiy < r < 2 X 1yiy) and types
(stars, cold and hot gas). The temperature limit for cold and hot gas particles has been
set at T = 2.5 x 107 Kelvin (see Keres et al., 2005).

Figure 9.10 illustrates the typical path that particles from the different categories
follow in a temperature-density plot. Colors represent the redshift: red for 20 < z < 3,
blue for 3 < z < 2 and green for z < 2. In general, hot gas particles at r < ryi
fall deeper into the potential well before they are heated than particles at r > ryi,.

Otherwise, the underlying physical process is the same: gas shocks.

In Figure 9.11 we plot a histogram of the maximum temperature reached by all the
cold baryonic particles that at z = 0 are inside r,, for the most and least massive ELOs
in the 8716 simulation (M ~ 3 x 1011 Mg and M@ ~ 5 x 10'°Mg respectively).
Two different populations can be clearly observed, one that has never been heated (cold
mode) and another one that has (hot mode). Moreover, Figure 9.12 shows a histogram
of the cooling time for the hot mode particles, that is, the time interval elapsed from
the moment when the particle reaches its maximum temperature until it is cold again.
From this Figure we infer that the hot mode population does not remain in the halo and
slowly cools, but it cools faster than expected in the classical scenario. The typical path
for particles of the hot mode along time is shown in the upper panels of Figure 9.10.
Another important piece of information is provided by Figure 9.13. The histogram
shows the SFRHs for the same ELOs as above. Moreover, the red histogram shows for
each bin [t, t + Delta t], the mass of that particles (among the previous ones) that reach
their maximum temperature just in this time interval. Note the maxima of these two
histograms are correlated, as the read maxima do not appear while important bursts of
SF are turned on, but just after. That is, SF and gas heating are correlated, but with

a time delay. We have seen in the previous section that these star formation bursts
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are heavily linked with dynamical processes as mergers and/or aggregation. Therefore,
heating processes giving rise to the hot gas halos take place in regions of mass assembly
following violent dynamical events. Shocks heat the gas as it is accreted and, as a
consequence, it is partially expelled to the outskirts of the configuration. Another
interesting result from Figure 9.13 is that, for both ELOs, the ratio between hot mode
and cold mode is higher as we go to lower redshifts. Moreover, the hot over cold mode
mass ratio seems to be higher in the more massive objects. In order to deepen into this
issue Figure 9.14 shows the baryonic mass inside r,, at z = 0 that has never turned into
hot gas over the total baryonic mass inside ry,, (i.e. the cold mode) for all ELOs in the
simulation. This Figure shows that the more massive ELOs have a more important hot
accretion mode population than the less massive ones. In fact, we have found in our
simulations (and can also be seen in Figure 9.14) that hot mode is delayed as we go to
lower mass objects indicating a strong relation between the mass of the object and gas
heating.

All these results presented here confirm the conclusions concerning the gas accretion
in galaxies obtained by Katz et al. (2003); Keres et al. (2005, 2008) from cosmological
simulation, using a different code (DEVA) and a time resolution two orders of magnitude
higher than the one used by these authors.

Finally, we remark that the hot gas halos we show in this study are the result of a
continuous mass assembly process in the ACDM model. They are strongly linked with
shocks generated in accretion and merging processes. The cold gas in a flow convergence
region follows a fast cosmological collapse, described in previous section and at some
moment it is shocked, heated and expelled out of the densest regions. Our results show

that gas heating processes are more effective as the mass of the halo increases.
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Figure 9.10: Density-temperature paths for different particles along z. Colors represent
the redshift: red for 20 < z < 3, blue for 3 < z < 2 and green for z < 2. Up left and
right: two gas particles heated before falling into the galaxy and then transformed into
stars. Lower left panel: Hot gas particle inside ry; at z = 0. Lower right panel: Hot

gas particle outside ryi; at z = 0.
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Figure 9.11: Histogram of the maximum temperature reached by all the baryonic par-
ticles inside rp, of two ELOs. Left: M@ ~ 3 x 101 Mg. Right: Mg ~ 5 x 10'°M,.
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Figure 9.12: Histogram of the cooling time for all the baryonic particles inside ry,, that
were accreted through the hot mode. Left: M2 ~ 3 x 10" M. Right: MEtar ~
5 x 1000
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Figure 9.13: Star formation rate and the maximum temperature mass rate of the hot
mode particles. Left: M ~ 3 x 101" M. Right: M ~ 5 x 1010M.
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Figure 9.14: Baryonic mass accreted in cold mode over the total mass for ELOs of the
8716 simulation.
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9.4 Conclusions

In this thesis we have studied mass and velocity distributions of several samples of
virtual ellipticals formed in self-consistent cosmological simulations. The simulations
provide us with clues on the physical processes involved in elliptical formation. They
indicate that most of the dissipation involved in the mass assembly of a given ELO
occurs in the violent early phase at high z and on very short timescales (and earlier on
and on shorter timescales as the ELO mass grows, see details in Dominguez-Tenreiro
et al. 2004, 2006), as a consequence of ELO assembly out of gaseous material and its
transformation into stars. Moreover, the dissipation rate history is reflected by the star
formation rate history. During the later slower phase of mass assembly, ELO stellar
mass growth essentially occurs without any dissipation and the SF rate substantially
decreases. So, the mass homology breaking appears in the early, violent phase of mass
assembly and it is essentially preserved during the later, slower phase. A consequence
is that the dynamical plane appears in the violent phase and is roughly preserved along
the slower phase, see discussion in Chapter 8.

We see that our results on the role of dissipative dynamics essentially include previ-
ous ones, but they also add important new information. First, our results on the role of
dissipative dynamics to break mass homology agree with the previous ones, but it is im-
portant to note that, moreover, ELO stellar populations show age effects, that is, more
massive objects produced in the simulations do have older means and narrower spreads
in their stellar age distributions than less massive ones (see details in Section 6.4); this is
equivalent to downsizing (Cowie et al., 1996; Thomas et al., 2005) and naturally appears
in the simulations, so that it need not be considered as an additional assumption.

Second, the preservation of the FP in the slow phase of mass aggregation in our
simulations also agrees with previous work based on dissipationless simulations of pre-
prepared mergers (Capelato et al., 1995; Dantas et al., 2003; Gonzalez-Garcia & van
Albada, 2003; Nipoti et al., 2003; Boylan-Kolchin et al., 2005). But, again, it is im-
portant to note that the considerable decrease of the dissipation rate in the slow phase
of evolution naturally appears in the simulations and we do not have to assume this
decrease. Also, the decrease of the merger rate in the later phase of mass assembly re-
sults from the global behavior of the merger rate history in the particular cosmological
context we have considered. Third, it turns out that the physical processes involved in
ELO formation unveiled by our simulations, not only explain mass homology breaking
(and its implications in the formation and preservation of the dynamical plane), and
stellar age effects or downsizing in ellipticals, but they might also explain other ellip-
tical properties recently inferred from observations. For example, the appearance of
blue cores, Menanteau et al. (2004); Lee et al. (2006); the increase of the stellar mass
contributed by the elliptical population since higher z, Bell et al. (2004); Conselice et al.
(2005); Faber et al. (2007) (see more details in Dominguez-Tenreiro et al., 2006).
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All our results on the structural and kinematical properties of elliptical galaxies
indicate that baryonic matter (specifically dissipation and gravitational shocking) plays
an important role in the origin of the observed fundamental relations. For this reason
we have tried to deepen into the history of gas particles and how they were accreted in
the ELO. In the classical scenario gas particles are first heated by gravitational shocks
and then cool and fall into the galaxy. However, we have found that there are two
different modes of gas accretion by galaxies: a cold mode and a hot mode, confirming
previous results (Keres et al., 2005, 2008). The cold mode includes gas particles that
had never been heated before being accreted by the galaxy. Simulations also show
that heated gas particles (hot mode) cool faster than expected in the classical scenario
(White & Rees, 1978). We found that the importance of both modes are related with
the mass of the galaxy and more massive galaxies are more efficient in heating the gas
by gravitational shocks. This is also related with the fact that these galaxies have a
lower baryonic content inside its virial radius than the less massive ones. However more
detailed simulations would be needed in order to obtain the real ratio of each one.

It is worth mentioning that the scenario presented in this Chapter shares some
characteristics of previously proposed scenarios, but it has also significant differences,
mainly that most stars in elliptical galaxies form out of cold gas that had never been
shock heated at the halo virial temperature and then formed a disk, as the conventional
recipe for galaxy formation propounds (see discussion in Keres et al., 2005, and refer-
ences therein). The scenario for elliptical formation emerging from our simulations has
the advantage that it results from simple physical laws acting on initial conditions that

are realizations of power spectra consistent with observations of CMB anisotropies.
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Chapter 10

Conclusions and Outlook

10.1 Summary and Conclusions

In this work, we have presented results from self-consistent cosmological hydrodynami-
cal simulations, run with the DEVA code (Serna et al., 2003), both in its sequential and
parallelized (OPENMP) versions. DEVA is a multistep AP3M-like SPH code particularly
designed to study galaxy formation and evolution in connection with the global cosmo-
logical model. This code uses a formulation of SPH equations that ensures both energy
and entropy conservation by including the so-called Vh terms. Particular attention
has also been paid to hold angular momentum conservation as accurately as possible.
Cooling processes have been included for the baryonic component. Star formation (SF)
has been implemented in the code in the framework of the turbulent sequential scenario
(Elmegreen, 2002) through a phenomenological parameterization that transforms cold
locally collapsing gas, denser than a threshold density, ppres, into stars with a timescale
given by the empirical Kennicutt-Schmidt law (Kennicutt, 1998).

Galaxy-like objects of different morphologies are formed in the simulations. We
have been extremely careful in designing a solid method for the classification of galaxies
so that the fulfillment of some specific requirements is guaranteed. Using this method
and with the aim of studying structure and kinematics of elliptical galaxies we have
built samples of elliptical-like objects for each simulation. Within this process, special
emphasis is made on the features that differentiate this work from previous studies:
obtaining a statistically reliable sample of elliptical-like objects from cosmological ini-
tial conditions with enough spatial resolution. In order to do so, we have developed
visualization software, —for a first approximation to the simulations— and an important
pipeline for numerical analysis of the simulations that allowed us to characterize and to
study elliptical-like-objects at two different scales: halo scale and baryon object scale.

The proposed approach covers the whole analysis process, from running the simu-
lation to its final comparison with observational results. We have focused on different

fundamental relations between kinematic and structural parameters, first trying to char-
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acterize them at z = 0 and then studying their evolution. At the end of each Chapter
partial conclusions on the different subjects studied in this work can be found. Here we

summarize them and give a global vision of this thesis:

We have first analyzed the structural and kinematical profiles of ELOs, finding a
good agreement with observations in the projected stellar profiles (Sérsic law) and the
dark-to-stellar gradients and dark-over-total ratios. These agreements with observa-
tional data strongly suggest that the intrinsic three-dimensional dark and bright matter
mass and velocity distributions we get in the simulations might also adequately describe
real ellipticals. We can summarize that ELOs are embedded in extended massive dark
matter halos which have suffer from adiabatic contraction. At the halo scale, ELOs
are not baryonically closed at this scale, i.e., ELOs miss baryons inside the virial radius
(rvir) compared with the average baryon-to-dark fraction. Moreover, massive ELOs miss
baryons as compared with less massive ones, when we normalize to the dark matter.
This trend extends up to the short scales of EL.Os. Baryon fraction profiles have been
found to show a typical pattern such that, the baryons that ELOs miss are found at
the outskirts of the configuration as diffuse hot gas. Concerning kinematics, stellar and
dark matter particles constitute two dynamically hot components with important veloc-
ity dispersions. These dark and bright matter components of ELOs are kinematically
segregated and do not show any clear mass or radial dependence. (Chapter 5).

As a second step, we have defined the different characteristic parameters which
describe these profiles at different scales (from the halo scale to the projected stellar
object). We have found that the (logarithms of the) ELO stellar masses, projected
stellar half-mass radii, and stellar central line-of-sight (LOS) velocity dispersions define
a dynamical fundamental planes (dynamical FPs) for all the different ELO samples.
Zero points depend on the particular values that the star formation parameters take,
while slopes do not change significantly when we change the size of the box simulated,
cosmological parameters (within the ACDM framework), resolution or star formation.
These planes are the observational manifestation of the intrinsic dynamical plane (IDPs)

which relates the 3D parameter counterparts: stellar masses M, stellar half-mass

star
e,bo?

samples have been found to show systematic trends with the mass scale in in the relative

radii r and stellar mean square velocity of the central object ogfﬁf). All the ELO
content of the dark and baryonic mass components that can be written as power-laws
of the form My /MEr = Avir(Mg‘fr)ﬂvir. A similar trend as the first one, although not
statistically confirmed (nor discarded) in all samples, is also observed in the relative
distributions of the dark and baryonic mass components, {5t /rifr = A (M)
(See discussion in Section 6.5.3). We have found that the dynamical FPs established
by the ELO samples are consistent with that shown by the SDSS elliptical sample

in the same variables, with no further need for any relevant contribution from stellar
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population effects to explain the tilt of the observed Fundamental Plane from the virial
relation. These effects could, however, have contributed to the scatter of the observed
FP, as the dynamical FPs have been found to be thinner than the observed one. The
results we report on hint, for the first time, at a possible way to understand the tilt of
the observed FP in a cosmological context. Our simulations suggest that the physical
origin of these trends lies in the systematic decrease, with increasing ELO mass, of
the relative dissipation experienced by the baryonic mass component along ELO mass
assembly. (Chapter 6).

star

In addition, ELOs 3D structural parameters, Mﬁg‘“, e

and p (the 3D shape pa-
rameter equivalent to the 2D Sérsic shape parameter n) define intrinsic structural planes
(ISPs). However these planes are not as tightly correlated as the IDPs are. The Photo-
metric Plane is the observational manifestation of this relation. An interesting result is
that we have discarded the possibility that the Fundamental Plane and the Photomet-
ric Plane are two projections of a four parameter law. We made the study for the 2D
observational relations and their 3D counterparts. We found that the shape parameter
n (or u in 3D) does not add significant physical information to the Fundamental Plane

relation (or intrinsic). (Chapter 6).

Stellar age properties of virtual ellipticals have shown a clear trend with their struc-
tural and dynamical characteristic parameters and seem to be linked with their forma-
tion and evolution processes in a cosmological scenario. Also, ELO stellar populations
have age distributions with the same trends as those inferred from observations, i.e.,
most stars have formed at high z on short timescales, and, moreover more massive ob-
jects have older means and narrower spreads in their stellar age distributions than less
massive ones (Dominguez-Tenreiro et al., 2004). This is equivalent to downsizing (see
3.3). (Chapter 6).

By studying the classical diagram introduced by Davies et al. (1983), we have shown
that the shape distribution of our simulated galaxies and their kinematics are closely
related and in good agreement with the observational data. We have confirmed that
more massive ELOs show a lower dispersion in rotational support and e shape values
than less massive ones, pointing to rounder shapes and lower rotational support for the
first ones. Finally we have seen that the 3D shape of a simulated elliptical could be
constrained by the position that it occupies in the classical diagram that relates these

two quantities. (Chapter 7).

From the analysis of ELOs at different redshifts, the main result we report on is
the quasi-homogeneity of the relaxed ELO population with respect to z, as measured
through the dynamical plane defined by their stellar masses, three-dimensional sizes
and mean square stellar velocities at different zs, and, at the same time, the increase
of the average values of these parameters as time elapses. The simulations also provide

us with clues on how these evolutionary patterns arise from the physical processes
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involved in galaxy assembly, namely, the plane appearance at an early violent phase as
a consequence of dissipation (i.e., gas cooling and its subsequent transformation into
stars), and the plane preservation during a later, quiescent phase, where dissipationless
merging plays an important role in stellar mass assembly. This early gas consumption
of proto-ellipticals also explains why most of the stars of today ellipticals formed at
high redshifts. Simulations give also clues on why the homogeneity is consistent with
the appearance of blue cores as well as with the increase of the stellar mass contributed

by the elliptical population since higher z. (Chapters 8 and 9)

However, studying the rotational support and shape of ELOs we found a systematic
change through time, i.e. evolution, by becoming rounder as we move to lower redshifts
and at the same time more velocity dispersion supported. This is found to be primarily
due to major dry mergers where only a modest amount of angular momentum is in-
volved into the merger event. Despite the general trend, in a significant amount of cases
the merger event involves a higher specific angular momentum, which in general causes
the system to acquire a higher rotational support and/or a more oblate shape. These
evolutionary patterns are still present when we study our systems in projection, mim-
icking real observations, and thus they should become apparent in future observations.
(Chapter 8).

All our results on the structural and kinematical properties of elliptical galaxies
indicate that baryonic matter (specifically dissipation and gravitational shocking) plays
an important role in the origin of the observed fundamental relations. For this reason
we have tried to deepen into the history of gas particles and how they were accreted in
the ELO. In the classical scenario gas particles are first heated by gravitational shocks
and then they slowly cool and fall forming the galaxy. However, we have found that
there are two different modes of gas accretion by galaxies: a cold mode and a hot mode,
confirming previous results (Keres et al., 2005, 2008). The cold mode includes gas
particles that had never been heated before being accreted by the galaxy. Simulations
also show that heated gas particles (hot mode) cool faster than expected in the classical
scenario (White & Rees, 1978). We found that the importance of both modes is related
with the mass of the galaxy and more massive galaxies are more efficient in heating the
gas by gravitational shocks. This is also related with the fact that these galaxies have
a lower baryonic content inside its virial radius than the less massive ones. However
more detailed simulations would be needed in order to obtain the real ratio of each one.
(Chapter 9)

Finally, we conclude that the simulations studied in this work provide a unified
scenario where most current observations on ellipticals can be interrelated, and that
this scenario has the advantage that it results from simple physical laws acting on
initial conditions that are realizations of power spectra consistent with the observations

of CMB anisotropies. The scenario presented in this work should be considered as a
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first order approximation to the real process in which elliptical galaxies are formed.
In this scenario subresolution processes of energy injection have been implicit included
through the values of pipres and ci. In a near future we will add to our codes these

physical processes in an explicit way.

10.2 Discussion

We have been extremely careful in studying the impact of different systematics in our
conclusions. We have checked how the star formation parameters, the resolution, the
cosmological model parameters or the size of the box simulated can affect our results.

We have presented and discussed them and found that:

e Changes in the star formation parameters have a great impact in the ELO proper-
ties and settle the zero point of several fundamental relations for elliptical galaxies
studied in this work, as the Fundamental Plane or the relation between stellar age
properties and kinematical descriptors. However, we have found that the star for-
mation algorithm affect in different directions these relations in terms of obtaining
a good agreement with observational data. Therefore for a given simulation, the
star formation parameters have just a narrow specific range in which they can

produce realistic objects.

e We have run several resolution tests using simulations in which the space resolution
was increased by a factor of two and the mass resolution by a factor of eight. All
these analyzes have shown a good agreement for the structural, kinematic and

stellar properties between elliptical-like objects of different resolutions.

e Changes in the cosmological parameters (Qp, Q,, @, h) within the ACDM
framework have not produced any significant change in the trends and results
found for simulated ellipticals. Nevertheless, we can mention that the amount of
baryonic matter available is one of the parameters that determine the final number
of elliptical-like objects and the range in mass of the sample that we will obtain
from a simulation. The other parameter that has an important effect in the final
number of ELOs in a simulation is the normalization parameter, og. Simulations
with a higher og have higher energy input. These simulations mimic an active
region of the Universe (Bryan & Norman, 1998). In these regions all the evolution
from primordial inhomogeneities occurs faster and early-type objects are more

frequent.

e Concerning the size of the box, we have obtained ELO samples for simulations
with Ly, = 10, 20 and 80 Mpc. As discussed in Section 4.2, Ly, affects the re-

sults in a simulation because decreasing Ly, is equivalent to putting a large-scale
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cut-off to the power spectrum of perturbations. Simulations with a large box size
are required to correctly get convergence on the results for the two-point correla-
tion, mass functions, etc. However, this does not imply that the modification of
these global properties of the large scale structure has necessarily an impact on
the inner properties of the small scale systems (galaxies and their halos). We have
found that box sizes changes imply that the clustering properties change and con-
sequently, the statistics of ELO mass assembly paths change: i.e. the fraction of
ELOs assembled through mergers of different characteristics, or at different times,
changes. However this has no significant consequences on average on the 3D mass
profiles, velocity distribution. That is, relaxed mass and velocity distributions
forget the details on how mass is assembled or the velocity is acquired. This is
not very surprising because equilibrium states do not depend on the path leading
to them. Manrique et al. (2003) have analytically probed a similar result for dark
matter halos. In their model, the density profile of relaxed halos permanently
adapts to the profile currently building up through accretion and does not depend
on their past aggregation history. Therefore the typical density profile of halos of
a given mass at a given epoch is set by their time-evolving cosmology-dependent
typical accretion rates. As a consequence this model predicts the existence of time-
invariant relations among the structural parameters that describe these halos (See
discussion in Salvador-Solé et al., 2005, 2007).

Finally we discuss briefly on some of the different sub-scale physic which have not
been explicitly considered in our simulations: metal enrichment and stellar evolution
(supernovae and black holes). Concerning chemical evolution, Martinez-Serrano et al.
(2008) have recently included it in DEVA code. Preliminary results on the structural
and kinematical properties of the elliptical-like objects of cosmological simulations have
showed a good agreement with the results presented in this thesis. Feedback effects
from supernovae, active galactic nuclei (AGN) or energy inputs other than gravita-
tional have not been explicitly included in these simulations. We note that the role of
discrete stellar energy sources at the scales resolved in this work is not yet clear. Theo-
retical arguments (Efstathiou, 2000) suggest that supernova feedback rapidly becomes
ineffective in systems with velocity dispersions greater than 100 km x s~!. Indeed,
MHD simulations also indicate that supernova effects in the star formation of galaxies
are more important for low massive galaxies (Scannapieco et al., 2008). On the other
hand, AGN feedback may be important in galaxies with high velocity dispersions (Silk
& Rees, 1998; Ciotti & Ostriker, 2001) such as those studied in this work. However
the nature, and indeed the direction, of the triggering is unclear (Silk, 2005), and it
is worth mentioning that until now, only models which incorporate negative (namely
which quenches SF) feedback have been simulated (see however Pipino et al., 2009, for

a first approach into the opposite direction). Our point of view, therefore, is to keep
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the physics of the simulations as simple as possible and to get an understanding on the
behavior of a simplified problem before investigating additional complexities such as
supernova and AGN feedback.

10.3 Outlook

It is said that in a work such as this one, development is never truly finished, it is only
halted. This is certainly true in this case; there are just too many things to test, to
polish, to add. But at some moment the line must be drawn. In the case of this work,
it has been drawn at the point in which the approach is beginning to prove effective: we
have a cosmological based framework that is able to reproduce and explain some of the
tightest structural and kinematical correlations observed for ellipticals and it is robust
against changes in the cosmological parameters, the space and mass resolution and the
size of the box simulated.

Concerning our tools, the development of a parallelized version of the code has had an
incredible impact, increasing the number of particles that can be simulated and opening
the door to the DEVA code of high performance facilities as the Leibniz Supercomputing
Center. Also, Martinez-Serrano et al. (2008) have just introduced chemical evolution
in DEVA code. This will bring us the possibility of obtaining variables that are directly
observable through the use of stellar population synthesis models. This issue, together
with the advantage of having a parallelized version of the code will certainly open an
incredible amount of possibilities for the future. In this sense, the analysis pipeline
developed in this thesis is a solid instrument that could be used as the main branch
for the expected development of algorithms and functions to analyze these forthcoming

simulations.
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Apéndice A

Introduccion

Este trabajo describe una propuesta para el estudio de la formacién y evolucién de
galaxias elipticas en un contexto cosmoldgico.

La introduccién comienza con una descripcién de la motivacion inicial y los objetivos
buscados. En el siguiente apartado, se procede a enumerar y describir una serie de
areas de conocimiento relacionadas con la propuesta, y, a continuacién, se presenta la
propuesta en si. En la dltima seccién se describe, a grandes rasgos, la organizacién del

resto del trabajo.

A.1 DMotivacién y objetivos

Desde 1930, cuando las galaxias se confirmaron como los elementos de construccién
fundamentales del universo, su origen y evolucién se ha mantenido como uno de los
mas importantes retos para la astronomia y la cosmologia. Sin embargo, también re-
sulté evidente que era uno de los mas dificiles de discernir fundamentalmente por dos
razones:

Primero porque las galaxias evolucionan en un tiempo muy prolongado, lo que hace
imposible estudiar una galaxia desde su nacimiento a su muerte. Asi pues, los astréno-
mos se han enfrentado al reto de estudiar las galaxias a través de fotos instantaneas
aisladas. Recientemente una nueva generacion de telescopios y espectrégrafos ha hecho
posible coleccionar un inmenso ntimero de estas instantaneas e incluso lo que es aun
mas importante, ver galaxias muy lejanas.

La segunda razoén fue que, como en cualquier problema fisico, el estudio de la forma-
cion de galaxias necesita unas condiciones iniciales sélidas. La cosmologia ha estudiado
este tema durante las iltimas siete décadas y en los tltimos anios ha surgido un modelo
cosmoldgico basado en firmes ideas fisicas y observacionalmente consistente. EI modelo
del Big Bang 6 de la gran explosién para describir el Universo en expansién, cuya es-
tructura y dindmica puede ser descrita en el marco de la relatividad general, tiene un

numero de parametros cosmologicos que actualmente estan bien acotados por numerosas
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observaciones: Las medidas del satélite WMAP del fondo de radiacién de microondas
(FRM, Dunkley et al., 2009), los datos de supernovas (Riess et al., 2007) las mediciones
de estructura a gran escala (Massey et al., 2007; Percival et al., 2007) entre otras, han
establecido un modelo concordante de Universo espacialmente plano con una densidad

de materia de aproximadamente el 30 % de la critica.

Este modelo predice que la estructura a gran escala de la distribucién de galaxias
que observamos en los catdlogos de galaxias tiene que haberse formado a través del
colapso gravitacional de pequenas fluctuaciones primordiales. Las propiedades de estas
densidades a gran escala pueden predecirse desde las condiciones iniciales observadas en
el FRM combinadas con nuestro conocimiento de la gravedad descrita por la relatividad
general. Los distintos catdlogos que incluyen estudios a gran escala como SDSS (York
et al., 2000) o 2dF (Folkes et al., 1999) confirman esta idea. Mientras que la teoria del
origen de las estructuras a gran escala es mas que prometedor, existen sin embargo,
preguntas abiertas a menor escala que el modelo estdndar tiene todavia que contestar.
Una de ellas es la formacién de las galaxias para la que el modelo tiene que poder

explicar un inmenso numero de datos observacionales ya disponibles.

De hecho, actualmente el niimero de datos observacionales disponibles es tan inmenso
que el estudio detallado del origen y evolucién de las galaxias exige centrarse en algin
caso especifico. El termino galaxia comprende una amplia variedad de tipos de galaxias
con diferentes propiedades. Una forma de profundizar en este tema durante las iltimas
décadas ha sido intentar conocer como se ha formado cada uno de estos tipos de galaxias,
ya que compartiendo las mismas propiedades fisicas su proceso de formacién deberia

compartir también algunos aspectos comunes.

De todas las clases o tipos de galaxias, las galaxias elipticas son las mas faciles de
estudiar ya que muestran las regularidades empiricas mas precisas, a veces en forma
de correlaciones muy fuertes entre sus parametros observacionales (Djorgovski & Davis,
1987; Faber et al., 1987; Caon et al., 1993; Bernardi et al., 2003a). El interés de estas
regularidades reside en que pueden tener codificada mucha informacion relevante acerca

del proceso fisico que subyace en la formacién y evolucién de las elipticas.

Todos los nuevos avances hacen posible por vez primera preguntarse cuestiones clave,
significativas sobre el modo en que las galaxias elipticas se formaron y como evoluciona-
ron a través de los 10 billones de anos de historia del Universo. ; Cuando aparecieron?
1, Qué provoco el proceso de su formacién? ;Se forman todas en una unica época bien
definida 6 su formacién se extiende en el tiempo? ;Cudl es la conexién entre esta pobla-
cion y la fisica del inicio del universo? Y quizd lo més interesante de todo, ;Cual es el
proceso que establece las relaciones observadas entre varias propiedades estructurales y
cinematicas?

Las simulaciones hidrodindmicas autoconsistentes son una poderosa herramienta

para investigar estas preguntas, ya que permiten seguir de forma precisa la evolucién
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de las propiedades dindmicas y termodinamicas de la materia en el universo. La idea
general es resolver simultdneamente las ecuaciones gravitacionales e hidrodinamicas. La
clave esta en conectar las condiciones iniciales ofrecidas por la cosmologia y todos los
datos disponibles de las observaciones. Por ello, en cierto sentido juegan el papel de los
experimentos para los astrofisicos.

La mayor ventaja de este tipo de simulaciones es que la fisica se introduce al nivel
mas general, y los procesos dindmicos relativos al ensamblaje de las galaxias, tales como
el colapso, la caida de gas, interacciones, fusiones, etc., surgen de forma natural, en vez
de postulados a priori, y pueden ser seguidos en detalle. Sélo la escala fisica subresolu-
cioén necesita ser modelada. Estas consideraciones enfatizan el interés en las simulaciones
hidrodinamicas como una herramienta conveniente para entender la formacién y evolu-
cion de galaxias desde el campo de las fluctuaciones primordiales.

Asi, la motivacién para el presente trabajo ha sido usar simulaciones hidrodindmicas
autoconsistentes para construir un armazén tedrico con el que interpretar y estudiar las

diferentes observaciones de galaxias elipticas.

A.2 Aspectos teoricos

La propuesta que se esboza en la seccién anterior tiene relacién con varias areas de
conocimiento. Los primeros Capitulos de este trabajo se incluyen en la Parte I, Marco
Teorico, donde se describen las principales areas de conocimiento asociadas a la pro-
puesta. A continuacién se presentan brevemente los campos que se tratardn en esta
Parte I, asi como las razones que han sugerido incluirlos en dichos Capitulos.

Desde el momento que los modelos tedricos proporcionaron algunas condiciones ini-
ciales era una cuestion de tiempo que los cientificos comenzaran a estudiar su evolucién
vy a compararlos con las observaciones. La compleja evolucion de las perturbaciones ini-
ciales hace de las simulaciones cosmolégicas de N-cuerpos, en las que se calcula solo la
fuerza gravitatoria, una poderosa herramienta para estudiarlos en el régimen no lineal.
Los primeros intentos de usar esta técnica en el estudio de la formacion de estructuras
a gran escala comenzaron en los 70 (Peebles, 1974; Press & Schechter, 1974; Miyoshi
& Kihara, 1975; Aarseth et al., 1979), obteniendo un gran éxito y motivando varias
simulaciones cosmoldgicas de N-cuerpos en todo el mundo.

Desde estas primeras aproximaciones hasta nuestros dias, los diferentes algoritmos
e ideas que engloba esta técnica han ido refindndose continuamente. En este sentido,
y en primer lugar habria que decir que los simuladores estan en deuda con todos los
increibles avances en tecnologia de computadores producidos en las iltimas décadas.

La incorporacién de la hidrodinamica a las simulaciones cosmolégicas ha hecho po-
sible estudiar no solo la formacién gravitacional de los halos de materia oscura, sino

también las propiedades de la materia baridénica, y por tanto la formacién de galaxias
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asociada con esos halos. Las primeras simulaciones hidrodinamicas autoconsistentes se
realizaron a finales de los 80 (Evrard, 1988; Hernquist & Katz, 1989; Navarro & White,
1994).

Hasta la fecha, ningiin cédigo tiene el suficiente rango dindmico para considerar a
la vez la evolucién cosmoldgica a gran escala en cientos de megapéarsecs y la formacién
de estrellas de bariones. Pero la heuristica fisica ha incorporado con éxito algunos al-
goritmos para a partir de modelos realizar la conversién de bariones en estrellas (Cen,
1992; Tissera et al., 1997; Thacker & Couchman, 2000). Desde el comienzo de este nue-
vo milenio varios grupos han obtenido gran éxito en modelar la formacién de galaxias
utilizando simulaciones autoconsistentes que tienen en cuenta la dindmica de la materia
oscura y el gas, el enfriamiento radiactivo, la formacién de estrellas y algunos otros
aspectos fisicos a escalas subresoluciéon (Sommer-Larsen et al., 2002; Murali et al., 2002;
Meza et al., 2003; Saiz et al., 2003; Kawata & Gibson, 2003; Séiz et al., 2004).

En cualquier caso para hacer un estudio adecuado tenemos que entender no solo la
forma en que estas simulaciones funcionan, sus limitaciones y sus ventajas, sino también
conocer como comparar correctamente sus resultados con la teoria y las observaciones.
En este punto necesitamos profundizar en los datos disponibles para las galaxias elipticas
y descubrir que es lo que realmente sabemos sobre ellas. Es muy importante entender
como se ha obtenido toda esta informacién, para ser capaz de mimetizar en lo posible
los mismos métodos y facilitar la comparacion.

Por ltimo, también tenemos que estudiar los diferentes modelos que se han pro-
puesto para la formacion y evolucién de las galaxias elipticas. Por una parte, un grupo
de primeras observaciones sugeria que las galaxias elipticas se formaron en épocas tem-
pranas y en escalas de tiempo muy cortas, en lo que se ha llamado escenario de colapso
monolitico (Eggen et al., 1962; Larson, 1974; Matteucci, 2003). Por otra parte, otro gru-
po de observaciones recientes sugiere que las fusiones de galaxias a redshift intermedios e
incluso bajos pueden haber jugado un papel importante en la formacién de las elipticas,
senialando hacia lo que se conoce como escenario jerarquico (White & Rees, 1978; Cole
et al., 1994; Bundy et al., 2005). Estos resultados observacionales, que resultan a la vez
paraddjicos y desafiantes, indican que el estudio de este problema en conexién con el

modelo cosmolégico es una clara necesidad y un método muy prometedor.

A.3 Meétodo

Inspirado por todo el trabajo previo en simulaciones autoconsistentes ya mencionado,
y especialmente por el trabajo de Séiz et al. (2004) hemos intentado avanzar un paso
mas en el estudio de las galaxias elipticas usando este método. Para ello hemos tra-
bajado en obtener de las simulaciones estudiadas una amplia muestra de sistemas que

permita a la vez tener suficiente estadistica, y que la resolucién de estos sistemas sea lo
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suficientemente alta para permitir un andlisis cinemético y estructural apropiado.

Un aspecto critico en relacion con el cédigo utilizado para realizar las simulaciones
es que las leyes de conservacién se verifiquen exactamente. Particularmente, un cédigo
numérico apropiado debe satisfacer todas las leyes de conservacién para cantidades
fisicas como el momento, energia, o entropia. En esta tesis hemos usado el cédigo DEVA
(Serna et al., 2003) y su versién paralela P-DEVA que cumplen todos estos requisitos.

Ya que intentamos utilizar estas simulaciones como un método para entender mejor
el Universo real, es esencial tener una via mas o menos directa de comparacién entre los
resultados de la simulacién y las observaciones. Para realizar esta comparacién debemos
basarnos en las propiedades de las galaxias que se miden tanto en los resultados de las
simulaciones como en las observaciones.

En este trabajo, hemos estudiado la fuerte correlacién observada entre diferentes
parametros estructurales y dindmicos de las elipticas. Utilizando las simulaciones hidro-
dindmicas hemos estudiado, ademas del equivalente a diversas medidas observacionales,
los parametros fundamentales en 3D a escala estelar y los pardmetros a escala del ha-
lo para todos nuestros objetos virtuales de tipo eliptico. Con la informacién obtenida
en este trabajo, queremos profundizar en el origen de estas correlaciones, senalar su
evolucién con redshift y sus implicaciones en la formacién de galaxias elipticas.

Para poder realizar esta tarea primero debemos lidiar con el diseno de las simulacio-
nes que necesitamos para conseguir el objetivo estadistico y de resoluciéon en nuestras
muestras. Hemos de tener en cuenta que los recursos disponibles son limitados, en el
sentido no solo de la potencia de calculo de las maquinas, sino también de tiempo real.

Una vez que configurados todos los detalles de las simulaciones, hemos construido
un grupo de herramientas de andlisis dirigidas a una comparacién apropiada entre los
datos observacionales y los resultados tedricos (analiticos y simulaciones). Tal y como
puede verse a lo largo de este trabajo, estamos interesados en muchos parametros y
propiedades diferentes de nuestras elipticas virtuales, asi que necesitamos desarrollar
una cantidad significativa de programas de computacién y algoritmos. Sin embargo, la
idea general que preside nuestra implementacién ha sido crear un proyecto sélido de
analisis que pueda ser 1til no solo para analizar estas simulaciones sino también las del
futuro. Hemos hecho su arquitectura muy modular, para facilitar la inclusiéon de maés
funciones y/o la mejora de las antiguas. Para facilitar la utilizacién de nuevos usuarios

se han definido diferentes pardametros globales que pueden ser ajustados rapidamente.

A.4 Estructura de la tesis

La tesis se organiza en cuatro partes:

Parte I — Marco tedrico: Proporciona la base del trabajo para los resultados de

la Parte III con una introduccion para cada campo de conocimiento utilizado en
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el presente trabajo. Los términos y conceptos utilizados en los resultados son in-
troducidos y descritos. El Capitulo 2 Introduce las simulaciones hidrodinamicas
autoconsistentes. En particular presentamos el cdédigo utilizado en nuestras simu-
laciones, DEVA. El Capitulo 3 proporciona una visién general de la teoria actual

de formacion de galaxias, los modelos y las cotas observacionales.

Parte I — Simulaciones y herramientas: Incluye el Capitulo 4 en el que se presenta
una descripcion detallada de las diferentes simulaciones estudiadas, como se han
analizado, y los diferentes aspectos técnicos relativos al andlisis de las propiedades

de los objetos virtuales tipo eliptica.

Parte III — Resultados: Presentamos los resultados de nuestro estudio de la forma-
cién de galaxias utilizando simulaciones hidrodindmicas en dos bloques separados.
El primero, que incluye los Capitulos 5, 6 y 7, profundizan en diversas propieda-
des cinematicas y estructurales de las elipticas virtuales. El segundo bloque versa
sobre las caracteristicas de las galaxias elipticas en épocas mas tempranas. En par-
ticular, el Capitulo 8 presenta un estudio de evolucion de las diferentes relaciones
fundamentales para este tipo de galaxias a partir de un corrimiento al rojo (z) por
debajo de 1,5. Finalmente, el capitulo 9, profundiza en los diferentes escenarios de

formacién y evolucién de galaxias elipticas.

Parte IV — Conclusiones y trabajo futuro: Contiene las conclusiones, una breve

discusién y un esbozo general de futuras lineas de trabajo.

El Apéndice A contiene la presente traduccién al espanol del primer Capitulo. En
el Apéndice B se puede encontrar la traduccién al espanol de la parte IV: Conclusiones
y trabajo futuro. Adicionalmente, como marco general de este trabajo, el Apéndice C
presenta el Modelo Cosmolégico Estandar a grandes rasgos, introduciendo varios con-
ceptos utilizados en esta tesis. El Apéndice D incluye varias tablas de datos a las que
nos referiremos a lo largo de esta tesis.

Finalmente, hay que indicar que parte del trabajo que se presenta en este manuscrito
ha aparecido publicado en diferentes revistas (Onorbe et al., 2005; Dominguez-Tenreiro
et al., 2006; Onorbe et al., 2006; Ofiorbe et al., 2007; Gonzélez-Garcia et al., 2009)! y
resumenes de conferencias (Ofiorbe et al., 2006; Onorbe et al., 2006, 2007; Dominguez-
Tenreiro et al., 2008; Onorbe et al., 2008) en los que he participado durante el desarrollo

de esta tesis, tal y como se indicard en cada Capitulo cuando corresponda.

Los primeros cuatro articulos pueden encontrarse en el Apéndice E. El tltimo articulo ha sido
incluido en la Seccién 8.5



Apéndice B
Conclusiones y trabajo futuro

B.1 Conclusiones

En este trabajo hemos presentado resultados de simulaciones cosmolégicas hidrodindmi-
cas autoconsistentes realizadas con el c6digo DEVA (Serna et al., 2003), en sus versiones
secuencial y paralelizada (OPENMP). DEVA es un cédigo tipo SPH-AP3M multipaso
disenado especificamente para estudiar la formacién y evolucion de las galaxias en co-
nexion con el modelo cosmolégico. Este codigo usa una formulacion para las ecuaciones
SPH que asegura la conservacion tanto de la energia como de la entropia incluyendo los
llamados términos Vh. En este sentido se ha prestado una particular atencién a que la
conservacion del momento angular sea lo mas precisa posible. El proceso de enfriamien-
to se ha incluido para la componente bariénica. La formacién de estrellas (FE) ha sido
implementada en el c6digo en el marco del escenario secuencial turbulento (Elmegreen,
2002) a través de un algoritmo de parametrizacion fenomenoldgica que transforma el gas
frié con una densidad superior a una densidad umbral y en colapso local, en estrellas con
una escala de tiempo dada por la ley empirica Kennicutt-Schmidt (Kennicutt, 1998).
En las simulaciones realizadas se han formado objetos tipo galaxia de diferentes
morfologias. Hemos sido extraordinariamente cuidadosos en disenar un método sélido
para la clasificacion de las galaxias en el que el cumplimiento de ciertos requerimientos
especificos esté garantizado. Usando este método, y con el fin de estudiar la estructura y
la cinemadtica de las galaxias elipticas hemos construido muestras de objetos tipo-eliptica
(OTEs) para cada simulacién. Durante este proceso se ha hecho un especial énfasis en
los aspectos que lo hacen diferente de otros estudios previos: la obtencién de una muestra
estadisticamente significativa de objetos tipo-eliptica obtenidos a partir de condiciones
cosmoldgicas iniciales y con suficiente resolucién espacial. Para ello hemos desarrollado
un software de visualizacién, —para una primera aproximacion a las simulaciones—, y un
importante grupo de herramientas para el analisis numérico de las simulaciones que nos
permite caracterizar y estudiar los objetos tipo-eliptica a dos escalas diferentes: a escala

del halo y a escala del objeto bariénico.
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La aproximacion propuesta en este trabajo cubre el andlisis del proceso completo,
desde la realizacién de las simulaciones, hasta su comparacion final con los resultados
observacionales. Nos hemos centrado en diferentes relaciones fundamentales entre los
parametros estructurales y cinemdticos, primero intentado caracterizarlos a z = 0, y
después estudiando su evolucién. Al final de cada capitulo se pueden encontrar conclu-
siones parciales de los diferentes aspectos estudiados en este trabajo. Aqui los resumimos

y damos una visién general de esta tesis:

Primero hemos analizado los perfiles estructurales y cinematicos de los OTEs encon-
trando un buen acuerdo con las observaciones en los perfiles estelares proyectados (ley
de Sérsic) y los gradientes de masa de materia oscura sobre la estelar y los cocientes
entre masa de materia oscura sobre la total. Este buen acuerdo con los datos observa-
cionales sugiere que las distribuciones intrinsecas tridimensionales de masa y velocidad
de la materia oscura y las estrellas que obtenemos en las simulaciones pueden también
describir adecuadamente las elipticas reales. En resumen podemos decir que los OTEs
estan embebidos en extensos halos masivos de materia oscura que ha sufrido contrac-
cién adiabética. A la escala del halo, los OTEs no estdn cerrados barionicamente, esto
es, los OTEs pierde bariones dentro del radio virial (ryi;) comparado con el promedio
cosmolodgico de fraccién de masa bariénica sobre materia oscura. Es mas, los OTEs mas
masivos pierden bariones comparados con los menos masivos, cuando normalizamos so-
bre el contenido de materia oscura. Esta tendencia se extiende a escalas més pequenas
de los OTEs. Los perfiles de fracciéon bariénica muestran un perfil tipico, de forma que
los bariones que los OTEs pierden se encuentran en los alrededores de la configura-
cién como gas caliente difuso. En relacién a la cinemética las particulas estelares y la
materia oscura constituyen una componente caliente con una importante dispersién de
velocidades. Las componentes de materia oscura y materia estelar de los OTEs estan
cinematicamente segregados y no muestran ninguna dependencia radial o en masa clara.
(Capitulo 5).

En un segundo paso, hemos definido los diferentes parametros caracteristicos que
describen esos perfiles a diferentes escalas (desde la escala del halo al objeto estelar
proyectado). Hemos encontrado que (el logaritmo de) las masas estelares de los OTEs,
el radio efectivo proyectado y las dispersiéon de velocidades estelar central en la linea-
de-visién definen el Plano Fundamental Dindmico (PFD). El punto cero depende de
los valores particulares que toman los parametros de formacién estelar, mientras que la
pendiente no cambia significativamente cuando cambiamos el tamano de caja simulado,
los pardmetros cosmolégicos (dentro del marco ACDM), la resolucién o la formacion
estelar. Estos planos son la manifestacion observacional del plano dindmico intrinseco
(PDI) que relaciona los pardmetros 3D homdélogos: la masa estelar Mggar, el radio efec-

tivo estelar 5% |y la dispersién de velocidades estelar en 3D o572, Todas las muestras
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de OTEs han mostrado una clara correlacion entre la masa estelar y el contenido rela-
tivo de las componentes bariénica y de materia oscura que puede describirse como una
ley de potencias My /M = Ay (ME%)Pvir, También se ha encontrado una correla-
cion similar a la anterior entre la masa estelar y la distribucién relativa de estas dos

tot /.star _
componentes, 1oy, /7e b, =

Apa(Mgtar)Pra | aunque en este caso no ha sido confirmada (ni
descartada) estadisticamente para todos las muestras (ver discusién en la Seccién 6.5.3).
Hemos encontrado que los Planos Fundamentales Dindmicos de las distintas muestras
de OTE son consistentes con el obtenido de la muestra de elipticas SDSS en las mismas
variables, sin necesidad de ninguna contribucion relevante del efecto de la poblacién
estelar para explicar la inclinacién observada. Sin embargo estos efectos podrian con-
tribuir a la dispersion del PF observado, ya que los PFDs han resultado ser més finos
que este. Los resultados que se presentan en este trabajo sugieren, por primera vez, una
posible explicacion del origen de la inclinacién del Plano Fundamental en un contex-
to cosmoldgico. Nuestras simulaciones sugieren que el origen fisico de estas tendencias
reside en la disminucién sistemaética, con el aumento de la masa del OTE, de la disipa-
cion relativa experimentada por la componente baridnica a lo largo del ensamblaje del
objeto. (Capitulo 6).

Ademds, los pardmetros estructurales en 3D de los OTEs, M3%r, rgfgg, y (el
parametro de forma en 3D equivalente al pardmetro de forma de Sérsic en 2D, n)
definen planos intrinsecos estructurales (PIEs). Sin embargo estos pardmetros no estan
tan correlacionados como los que conforman el PDI. El Plano Fotométrico es la manifes-
tacién observacional de esta relacién. Un resultado interesante es que hemos descartado
la posibilidad de que el Plano Fundamental y el Plano Fotométrico sean dos proyeccio-
nes de una relacién ain mas fuerte entre los cuatro parametros que intervienen en ellas.
Este estudio se ha hecho para las relaciones observacionales en 2D y de sus equivalencias
en 3D. Encontramos que la forma del pardametro n (6 p en 3D) no anade informacién

fisica significativa a la relaciéon del Plano Fundamental Dindmico. (Capitulo 6).

Las propiedades de la edad estelar de las elipticas virtuales han mostrado una cla-
ra correlaciéon con sus pardmetros estructurales y dindmicos caracteristicos que parece
ligada a su proceso de formacion y evolucién en un escenario cosmolégico. Las pobla-
ciones estelares de OTE tienen distribuciones de edad con las mismas caracteristicas
que las inferidas de las observaciones, esto es, la mayoria de las estrellas se ha formado
a alto z en escalas de tiempo cortas, y, ademads, los objetos mas masivos muestran me-
dias mas viejas y una dispersién mas estrecha en la distribucién estelar que los menos
masivos (Dominguez-Tenreiro et al., 2004). Esto es equivalente al dowsizing (Ver 3.3).
(Capitulo 6).

Estudiando el diagrama clésico introducido por Davies et al. (1983), hemos de-
mostrado que la forma de nuestras galaxias simuladas y su cinemadtica se encuentran

relacionadas y en buena concordancia con los datos observacionales. Hemos confirmado
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que los OTEs mas masivos muestran una dispersion mas baja en su soporte rotacional
y los valores de forma €, que las menos masivas, apuntando a formas més redondas y a
un soporte rotacional menor en las primeras. Finalmente hemos visto que la forma en
3D de una eliptica simulada puede obtenerse a través de la posicién que ocupa en el

diagrama clasico que relaciona estas dos cantidades en 2D (Capitulo 7).

Del analisis de los OTEs a diferentes épocas, el principal resultado es la cuasi-
homogeneidad de la poblacién de OTEs relajados con respecto a z, medida a través del
plano dindmico definido por sus masa estelares, tamanos tridimensionales y dispersion
de velocidades a diferentes zs, y, al mismo tiempo, el aumento de los valores medios de
estos parametros segun pasa el tiempo. La simulacién también nos da claves de como
estas pautas de evolucién surgen de los procesos fisicos involucrados en el ensamblaje de
galaxias, esto es, la aparicién del Plano Fundamental en una fase violenta inicial como
consecuencia de la disipacion (esto es enfriamiento del gas y su subsiguiente transfor-
macion en estrellas). La conservacién del plano durante una fase posterior, quiescente,
donde las fusiones sin disipacién juegan un papel importante en el ensamblaje de la
masa estelar. Este consumo precoz del gas en las proto-elipticas también explica porque
la mayoria de las estrellas de las elipticas de hoy en dia se formaron a altos redshifts.
Las simulaciones también nos dan ciertas pistas en cémo esta homogeneidad puede ser
consistente con la aparicion de nicleos azules y con el aumento de la contribucién de

las galaxias elipticas a la masa estelar desde alto z. (Capitulos 8 y 9).

Sin embargo, por otra parte, estudiando el soporte rotacional de la forma OTEs en-
contramos que existe un cambio sistematico a través del tiempo, esto es, evolucion, que
indica que los objetos son més redondos conforme el tiempo avanza y, al mismo tiempo,
el soporte por la dispersion de velocidades aumenta. Esto se debe principalmente a las
fusiones mayores secas donde solo una modesta cantidad del momento angular esta im-
plicada en el evento de fusién. A pesar de la pauta general, en un grupo significativo
de casos el evento de fusién implica un momento angular especifico mas alto que en
general, hace al sistema adquirir un soporte rotacional mas alto y/6 una forma més
achatada. Estas pautas de evolucién estan ain presentes cuando estudiamos nuestros
sistemas en proyeccién, mimetizan las observaciones reales, y asi podrian aparecer en

futuras observaciones. (Capitulo 8).

Todos nuestros resultados sobre las propiedades estructurales y cinematicas de las
galaxias elipticas indican que la fisica ligada a la materia bariénica (disipacién especifica
y calentamiento gravitacional) juega un papel importante en el origen de las relaciones
fundamentales observadas. Por esta razén hemos intentado profundizar en la historia
de las particulas de gas y en como fue acretada por los OTE. Encontramos dos modelos
diferentes de acrecién de gas por las galaxias: un modo frio y un modo caliente con-
firmando resultados previos (Keres et al., 2005, 2008). El modo fri6 incluye particulas

de gas que no han sido nunca calentadas antes de ser acretadas por la galaxia. En el
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escenario clasico se sugiere que en el modo caliente las particulas de gas son primero
calentadas por choques gravitacionales y después se enfrian lentamente formando la ga-
laxia (White & Rees, 1978). Hemos encontrado que la importancia de los dos modos
esta fuertemente relacionada con la masa de la galaxia ya que las galaxias méds masivas
son mas eficientes al calentar el gas mediante choques gravitacionales. Esto se relaciona
también con el hecho de que estas galaxias tienen un fraccién de masa bariénica sobre
masa total dentro del radio virial menor que las menos masivas. (Capitulo 9).
Finalmente, concluimos que las simulaciones estudiadas en este trabajo proporcionan
un escenario unificado donde muchas de las actuales observaciones para galaxias elipticas
pueden ser interrelacionadas, y que este escenario tiene la ventaja de que resulta de
leyes fisicas simples actuando sobre unas condiciones iniciales que son realizaciones del
espectro de potencias consistente con las observaciones de anisotropias de la Radiacién
de Fondo de Microondas. El escenario presentado en este trabajo debe ser considerado
una aproximacién a primer orden del complejo proceso en el que se forman las galaxias
elipticas. En este escenario los procesos fisicos subresolucion que implican inyeccién de
energia han sido incluidos de forma implicita a través de los parametros del algoritmo de
formacién estelar: pipres ¥ - En un futuro proximo estos procesos fisicos seran incluidos

en el codigo de forma explicita.

B.2 Discusiéon

El estudio del impacto de las diferentes sistematicas en nuestras conclusiones se ha
realizado de forma muy cuidadosa. Hemos revisado como los pardmetros de formacién
estelar, la resolucion, los parametros de modelo cosmoldgico o el tamano de la caja de la

simulacién pueden afectar nuestros resultados. Tras discutirlos hemos encontrado que:

e Los cambios en los parametros de formacion estelar tienen un gran impacto en las
propiedades de los OTE y situian el punto cero de varias relaciones fundamentales
de las galaxias elipticas estudiadas en este trabajo, como el Plano Fundamental o
la relacién entre la edad estelar y los descriptores cineméaticos. Sin embargo hemos
encontrado que el algoritmo de formacién estelar afecta en diferentes direcciones
estas relaciones en términos de obtener una buena concordancia con los datos ob-
servacionales. Asi, para una simulacion dada, los pardmetros de formacién estelar

tienen un rango especifico estrecho en el que pueden producir objetos reales.

e Hemos realizado varios test de resolucién usando simulaciones en las que la re-
solucién espacial fue aumentada en un factor dos y la resolucién en masa en un
factor ocho. Todos estos andlisis han mostrado buena concordancia para las pro-
piedades estructurales, cinematicas y estelares entre los objetos de tipo eliptica de

diferentes resoluciones.
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e Los cambios de los pardmetros cosmoldgicos (2a, Qyn, Qp, h) en el marco del

ACDM no han producido cambios significativos en las tendencias y resultados
encontrados en las simulaciones elipticas. Sin embargo podemos mencionar que la
cantidad de materia bariénica disponible es uno de los parametros que determina
el nimero final de objetos de tipo eliptica y el rango en masa de la muestra, que
obtendremos en una simulacién. El otro pardmetro que tiene un efecto importante
en el nimero final de OTEs en una simulacién es el pardmetro de normalizacion og
ya que las simulaciones con un og mas alto tienen una entrada de energia mas alta.
Estas simulaciones mimetizan una regién activa del Universo (Bryan & Norman,
1998). En estas regiones la evolucién a partir de las perturbaciones primordiales

ocurre mas rapido y los objetos de tipo temprano son mas frecuentes.

En relacién al tamano de la caja, hemos obtenido muestras de OTE para simula-
cién con Ly, = 10, 20 y 80 Mpc. Como se discute en la Seccion 4.2, el tamano
de Ly, puede afectar los resultados de una simulaciéon porque disminuir Ly, es
equivalente a poner un corte a gran escala en el espectro de potencias. Las simu-
laciones con un tamano de caja grande son necesarias para conseguir una correcta
convergencia de los resultados para la funciéon de correlacién, la funcién de ma-
sa, etc. Sin embargo esto no implica que las modificaciones de estas propiedades
globales de la estructura a gran escala tenga necesariamente un impacto en las
propiedades internas de los sistemas a pequena escala (las galaxias y sus halos).
Hemos encontrado que los cambios del tamaifio de caja implican que las propieda-
des de agrupamiento cambian y consecuentemente, hay cambios a nivel estadistico
en los distintos caminos de ensamblaje de masa para los OTEs: esto es, la fraccion
de OTE ensamblada a través de fusiones de diferentes caracteristicas y diferentes
tipos, cambia. Sin embargo, esto no tiene consecuencias significativas en promedio
de los perfiles de masa o la distribuciéon de velocidades en 3D. Es decir, la rela-
jacién de las distribuciones de masa y velocidad olvida los detalles sobre cémo se
ha ensamblado la masa o se adquiere la velocidad. Esto no es muy sorprendente
porque el equilibrio de los estados no depende de los caminos que han conducido
a ellos. Manrique et al. (2003) han demostrado analiticamente un resultado simi-
lar en halos de materia oscura. En su modelo el perfil de densidad de los halos
relajados se adapta permanentemente al perfil que se formaria a través de simple
acrecion y no depende de su historia pasada de agregacién. Como consecuencia
el perfil tipico de densidad de los halos a una masa determinada y a una época
dada es determinado por la tasa tipica de acreciéon que evoluciona en el tiempo y
depende del modelo cosmoldgico. Como consecuencia, este modelo predice la exis-
tencia de relaciones invariables en el tiempo entre los pardmetros estructurales

que describen estos halos (ver discusién en Salvador-Solé et al., 2005, 2007)
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Finalmente discutiremos brevemente sobre algunos procesos fisicos sub-escala que
no han sido considerados explicitamente en nuestras simulaciones: el enriquecimiento
metélico y la evolucién estelar (supernovas y agujeros negros). En relacién a lo primero,
Martinez-Serrano et al. (2008) han incluido recientemente en el cédigo DEVA la evolu-
cion quimica. Los resultados preliminares de las propiedades estructurales y cinematicas
de los objetos de tipo eliptica de las simulaciones cosmoldgicas han mostrado una buena
concordancia con los resultados presentados en esta tesis. Los efectos de las supernovas
y de nucleos galdcticos activos (NGA) u otros inputs de energia diferente a la gravi-
tacional no han sido incluidos explicitamente en estas simulaciones. Hay que destacar
que el papel de las fuentes de energia discreta de origen estelar en las escalas resueltas
por este trabajo no estd aun clara. Argumentos teéricos (Efstathiou, 2000) sugieren que
el efecto de las supernova se hace poco efectivo rapidamente en sistemas con velocidad
de dispersién mayor de 100km x s~'. De hecho, resultados obtenidos mediante simula-
ciones magneto-hidrodindmicas también indican que los efectos de la supernovas en la
formacién de galaxias son mas importantes para galaxias de baja masa (Scannapieco
et al., 2008). Por otra parte el efecto de los NGA puede ser importante en galaxias con
una alta dispersién de velocidades (Silk & Rees, 1998; Ciotti & Ostriker, 2001) como
las estudiadas en este trabajo. Sin embargo la naturaleza y la direccién en las que es-
te fendmeno afecta a la formacién estelar es poco clara (Silk, 2005) y merece la pena
mencionar que hasta ahora los modelos solo incorporan el efecto negativo (inhibicién
la formacién estelar) (ver Pipino et al., 2009, para una primera aproximacioén en la di-
reccién contraria). Nuestro punto de vista es dejar la fisica de las simulaciones lo més
simple posible y avanzar en la comprensiéon de la conducta del problema simplificado

antes de investigar complejidades adicionales como la supernovas y los agujeros negros.

B.3 Trabajo Futuro

Se dice que en un trabajo como este, el desarrollo nunca termina definitivamente, solo
se detiene momentianeamente. Esto es realmente cierto en este caso; existen un gran
nimero de temas que pueden verificarse, pulirse, y anadirse. Pero en algiin momento la
linea debe detenerse. En el caso de este trabajo, nos hemos parado en el punto en que la
aproximacion estd comenzando a demostrarse efectiva: tenemos un escenario cosmolégi-
co que es capaz de reproducir y explicar algunas de las correlaciones estructurales y
cinematicas mas fuertes observadas para las galaxias elipticas y que es robusto frente a
cambios en los pardmetros cosmoldgicos, la resolucion espacial y en masa y el tamano
de la caja simulado.

En relacién a nuestras herramientas, el desarrollo de una versién paralelizada del
codigo ha tenido un impacto increible, aumentando el niimero de particulas que pueden

ser simuladas y abriendo la puerta del cédigo DEVA a centros de computacién de alto
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rendimiento como el Leibniz Supercomputing Center. También Martinez-Serrano et al.
(2008) acaba de introducir la evolucién quimica en el cédigo DEVA. Esto proporcio-
nard la posibilidad de obtener variables directamente comparables con las observacio-
nes a través del uso de modelos de sintesis de poblacion estelar. Este hecho, junto con
la ventaja de tener una versién paralelizada del codigo, ofrece sin duda una increible
cantidad de posibilidades para el futuro. En este sentido las herramientas de analisis
desarrolladas en esta tesis son un instrumento sélido que puede ser utilizado como el
tronco principal para el desarrollo de algoritmos y funciones que analicen las futuras

simulaciones.



Appendix C

The Standard Cosmological
Model

C.1 Introduction

Nowadays all our knowledge about the Universe as a whole is joined to form what it is
called the standard cosmological model. The Hot Big Bang Model defines its general
framework and, generally speaking, it could be said that it explains with incredibly
accuracy the thermodynamical homogeneous evolution of the Universe. The theoreti-
cal background of the theory has suffered very little changes since its introduction in
the beginning of the XXth century. However the observational side of cosmology has
suffered a very different evolution. New technologies have made it possible a dramatic
development and we are currently able of discussing a Standard Model of Cosmology
with a fixed set of parameters bounded to at least a few percent accuracy in their values.

This Chapter will cover briefly the theoretical basics of the Hot Big Bang the-
ory, describing the key observational facts that have corroborated it. Firstly in Sec-
tion C.2 we set the basis and notation of the theory. In the following Sections we would
briefly introduce the different observational great successes of the model: the Hubble
law (Section C.3), Nucleosynthesis (Section C.4), the Cosmic Microwave Background
(Section C.5) and the Formation of Large Scale Structure (Section C.6).

C.2 The Hot Big Bang Model

The Hot Big Bang Model is a broadly accepted description for the origin and evolution
of our Universe. The model is based in two theoretical pillars: the theory of General
Relativity (GR) and the Cosmological Principle.

To the extent of our present knowledge, the gravitation at large scales is correctly
described by Einstein’s GR. It is the mathematical structure for cosmology and pro-

vides the geometrical framework for cosmological models. Finstein demonstrated that
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gravitation can be explained by the inertial motion in a curved space-time.

Since then, there have been some theoretical proposals to modify GR, however ob-
servations so far have not been able to discriminate between models. Many theoretical
and experimental progresses are studying the problem; for the time being, the simplest,

original GR remains in force.

Now, we can make use of all the old and new knowledge to describe the background
evolution of the universe, or Hot Big Bang Cosmology. This section will only cover the
basis about the Hot Big Bang model that it is needed as a theoretical context of this
thesis. We refer to Weinberg (1972) for a complete description of General Relativity.

Working inside a general relativistic framework, we need to define a metric tensor,
Juv, in order to characterize the evolution and properties of space-time. Once specified,

the space-time interval between two points is given by:
ds? = g, datdz” (C.1)

In general g, is coordinate dependent and ds? must be invariant under a change of

coordinates.

Once one is provided with the gravity theory, one should introduce symmetries that
restrict the large variety of possible cosmological models. For this, Einstein introduced
the Cosmological Principle. It states that, on large scales, the universe is spatially
homogeneous and isotropic. So far, its strongest support comes from the observed
isotropy of the cosmic microwave background radiation (CMB). Homogeneity remains
as a hypothesis, however if we assume that we do not occupy a privileged location in

the Universe (Copernican principle), then isotropy leads to homogeneity.

The formulation of the Cosmological Principle applied to what we know of the metric
lead us to the Robertson- Walker metric. The most general metric form describing this
family of cosmological models can be written as follows:

ds? = 2dt? — R*(t) + r2(d6?* + sin*0d¢?) (C.2)

.
1 — kr?

where t is the physical cosmic time and the constant k specifies the sign of the spatial
curvature of the universe. The spatial terms have been decomposed into a product of
a time-dependent scale factor R(t) and comoving, time-independent, spherical coordi-
nates r, 6, ¢. A comoving observer is an observer who measures zero momentum at
its own location or who sees an isotropic universe. Therefore, the cosmic time ¢, is
the time measured by the comoving observers which are at rest with respect to the
expansion. Using comoving coordinates allow distances, locations, etc. in an expanding

homogeneous and isotropic cosmology to be related solely in terms of the scale factor.
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One can make the scale factor dimensionless, defining:

(C.3)

where %y is the age of the universe today so that a = 1 at the present. It is useful
to keep in mind the relationship between physical, 7(¢), and comoving coordinates &,

which applies to any cosmic distance:
7(t) = a(t)Z (C.4)

In cosmology it is useful to define time and distances in terms of the redshift, z. It

is defined by:
' _p=tzald) (C.5)
R(t) a(t) '

The historical origin of its name comes from the analogy with the Doppler effect. Taking
into account that t < to, if R(¢9) > R(t), the universe is expanding and gives a red shift
(z > 0) while if the universe is contracting, then R(ty) < R(t), and gives a blue shift.
As we will see in the following section, observational data points to the first case.

The Cosmological Principle also restricts the form of the material content of the
Universe. Since a perfect fluid can be characterized by its isotropy around observers co-
moving with the fluid, the energy-momentum tensor for the material content of Universe

must have the perfect fluid form

p
T;w = PYuv + (P + C*Q)Uuuu (06)

where p and p are respectively the pressure and the energy density measured by a
comoving observer, and u, is the four velocity of the fluid, w, = dz,/ds.

Provided with the energy-momentum tensor, we can now move to the search for the
relativistic field equations. However these equations cannot be derived in any rigorous
sense; all that can be done is to follow Einstein and start by thinking about the simplest
form such an equation might take. To obtain some insight into how this can be achieved,
it is helpful to consider first the weak-field limit (for v << ¢ we have to recover Newton’s
theory) and the analogy with electromagnetism. Here we would just point that in a
similar spirit to Maxwell’s equation for the electromagnetic field Einstein derived the

Einstein’s Field equations (see Peacock, 1999, for the complete argumentation):

rG
4

G =
a c

T;w (C?)

Here T},, is the energy-momentum tensor, G is the Newton constant, ¢ the light velocity
and G, is known as the Einstein field. He identified the gravitational field with the

metric tensor g,,. Once this relation is made, the Einstein field is characterized with
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what we know about it at weak scale and with what is known of the energy-momentum

tensor. We get,

1 8tG
G,uzz = R,uzz - §g,uuR = 7

where R, is the Ricci tensor, a contraction of the Riemann tensor, R, = Ry, with

Ty (C.8)

components:

i
Ry = 35; Ry; = 0;

Rij = (RR + 2R? + 2k)gij (Cg)

and R the Ricci, or curvature, scalar, R = ¢*° R,p.

In 1917 Einstein, in an attempt to balance the forces and preserve the previously
accepted picture of a static universe, modified his equation introducing a term, the
cosmological constant A, playing the role of a repulsive force (when A > 0), allowing

the construction of a static universe.

8tG
Gl“/ + Ag/“’ = 7T/“’ (C].O)

This term can be introduced in Einstein’s equations if we consider also terms of zero
order in second derivatives of the metric. The physical meaning of the cosmological
constant can be seen as the curvature of empty space or, if we move the term to the
right-hand side of the field equations, as the energy-momentum tensor of the vacuum.
Therefore the existence of a cosmological constant dark energy different from zero, is

equivalent to the existence of a non-zero vacuum energy.

Inserting Equations (C.2) and (C.6) into (C.10) lead to the Friedmann equations,
that govern the expansion of space in homogeneous and isotropic models of the universe
within the context of GR.

. 2

R 8rCG k2 A
m==) =22, 22 11

(R) 5 PR T3 (C.11)

and
2[R\ ke?
_ 2

2§+ (R) = —81Gp + Ac” — 2 (C.12)

where H is called the Hubble parameter. Its present value Hj is the Hubble constant,
usually expressed in terms of the dimensionless number h in the form Hg = 100 x h X

km x s~1 x Mpc™t. From these two equations and the Bianchi identities' we can obtain

!These identities are obtained from the symmetries of the Riemann tensor and its covariant derivative.
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a cosmological energy conservation law:

4 (o) 10 (1) =0 (C.13)
This equation is easily solvable if the equation of state of the fluid is specified. The
various species entering the cosmological models are assumed to satisfy barotropic linear
equations of state of the form p = wp and w = cons. All the cosmological models that
use Friedmann equations and the equation of state are known as Friedmann-Robertson-
Walker models.

In addition, it is useful to define the critical density of the universe as

2
pc(t) = 351{(;)

(C.14)

This is the energy density, obtained from Equation C.11, corresponding to a flat Universe
(k = 0) and including the cosmological constant as a part of the total energy density

(par = Ac?/87@). Using this critical density we can redefine the density parameters as:

Qi(t) = pi(t)/pe(t) (C.15)
for each species, i, that could be present in the universe at different epochs: baryons
(b), dark matter (DM ), photons (7), energy vacuum (A) and so on. With the density
parameters we can rewrite Friedmann equations in the following form,

62
Qt) = Z Qi(t) =1— GQ(SH% (C.16)

that relates the density parameters to spatial curvature. The parameter €(t) is the
value of the total energy density. When we refer to its value at the present epoch, we

write .

Using the last definition we can rewrite energy conservation (Equation (C.13) as

d(i(t) H? (t)a® )
dt

=0 (C.17)
allowing us to derive how each of the energy densities evolve with time
Qi (t)H*(t)a>3% = cons. = Q; o H (C.18)

We can also obtain how the scale factor a(t) evolve with time in case one specie domi-

a(t) = (t )2/3(w+1). (C.19)

to

nates the universe:

Hence we can now calculate how all the different densities have evolved, and which
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one has been more important over time. In Table C.1 we present energy density evolu-

tion for different contents of the universe.

type of content w | n; =3+ 3w;
stiff fluid 1 6
radiation and/or ultra-relativistic matter % 4
cold non relativistic matter 0 3
vacuum energy -1 0
“curvature” - % 2

Table C.1: Energy density evolution for different contents of the Universe

Consequently, with all these findings we not only know that the evolution of the
Universe depends on what it contents, we also know how each content will affect its
evolution. From C.18 one can immediately see that at the beginning of times, when
a = 0, p = co. That is, the solution has a singularity at that time, presumably at
the Universe’s beginning. This initial cosmological singularity is also called Big Bang
singularity, and why Hot Big Bang theory has its name. Plugging in (C.18) in (C.16)

we arrive at

kc?
H%(t) = H? Qioa W — 2
( ) 0 [; ,0a CLQ(t)HQ(t) (C 0)
and considering a Universe composed by radiation, no relativistic matter and with

vacuum energy we get

kc?

HQ(t) = Hg {QA,O - m

+ Qoa 3(t) + Q%Oa4(t)] (C.21)

From the last equation we observe that in the general model, relativistic matter
and/or radiation domain the expansion during the primitive Universe, follow by the
non-relativistic matter and the curvature, finally expanding as the cosmological constant
dictates. So one way to characterize a specific Friedmann-Robertson-Walker model is
by just fixing actual values, Hy and all the €; .

Equation (C.20) is the one usually used to describe the Big Bang Model Universe.
In fact, a set of very different Universes, depending on the values that Hy and all the
2; o take. Here rather than going to all these possibilities we just resume what all these
models have in common. In the Big bang model, the Universe has been evolving, starting
from an initial, extremely dense, small and hot state, when the size of the universe was
zero and the temperature was infinite. During the first fraction of a second, the initial
temperature was so high as to allow equilibrium between matter and radiation. During
the subsequent expansion the density and temperature fall and particles were moving
with non-relativistic energies. The processes of formation of particle pairs gradually

gave their way to those of nucleosynthesis and the formation of the first light element
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abundances. Finally, the temperature was lowered to a point to permit the formation
of structures through the action of gravity, responsible for the great concentrations of
mass that would later form the stars and the galaxies. The spatial geometry of these
models can either be positively curved, & > 0 (like the surface of a sphere), flat, k = 0
(like Euclid’s space) or negatively curved, k¥ < 0 (like a saddle). In the first case the
volume of the Universe is finite, in the other two it can be infinitive.

Up to now we have seen all the theoretical development of the Hot Big Bang Model.
But, why it has become our Standard Cosmological Model? Simply because it gives very
good answers to a variety of independent observational facts. The four key observational
successes of the standard Hot Big Bang model are the following: The Expansion of
the Universe, Nucleosynthesis of the light elements, Existence of Cosmic Background
Radiation and the Formation of Large Scale Structure. The Big Bang model makes
accurate and scientifically testable hypotheses in each of these areas and the remarkable

agreement with the observational data gives us considerable confidence in it.

C.3 The Expansion of the Universe: The Hubble Law

In 1929 E. Hubble found the empirical Hubble law
z = Hodp, (C.22)

linearly relating the redshift of galaxies to their luminosity distance. The luminosity
distance is defined as dj, = \/W , where L is the absolute luminosity of the source
and F' its apparent luminosity, i. e. the flux of energy received in the collecting surface
of the telescope. So, luminosity distance dy, is defined as such that a source of absolute
luminosity L, located in a static Euclidean space, would produce a flux F' at distance
dr.

In the approximation in which galaxies are comoving, the proper distance to a given
galaxy scales with a(t), and consequently its recession velocity V is related to its physical
distance d at a given time by

V =Hd (C.23)

So the Big Bang model gives as straightly the empirical Hubble Law! We can even
go one step further, using instead of Euclidean metric the Robertson-Walker metric,
which we know is the one that rules at large scales. It follows that the relation between
dy, and the redshift parameter z is nonlinear. To second order this relation takes the

form )
Hydr(2) = 2+ 5(1 —qo)22 + - (C.24)

where ¢ = —RR/ R? is the deceleration parameter of the Universe and qo its present

value. We can also write it, from Friedmann Equations (C.11-C.12), as a function of
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Figure C.1: Hubble law for SNe Ta: MLCS2k2 SN Ia Hubble diagram. SNe Ia from
ground-based discoveries in the gold sample are shown as diamonds, HS7T-discovered
SNe Ia are shown as filled symbols. Overplotted is the best fit for a flat cosmology.
Qm = 0.29, Qp = 0.71. Inset: Residual Hubble diagram and models after subtracting
empty universe model. Figure taken from Riess et al. (2007)

density parameters, ¢ = €,,/2 + €, — Q. It follows then from RW metric, i. e. from
Cosmological Principle, that the empirical Hubble law can be expected to be true only
for z < 1. On the other hand for z < 1, the approximate equalities d ~ dr(z) and
V & z hold. Thus empirical and theoretical Hubble laws coincide in this regime. In this

weak sense checking Hubble’s law is also a check of the RW metric.

The accurately check of Hubble’s law, measuring Hy and eventually going deeper in
redshift to determine qg, has been a central research program in cosmology since 1929.
The key observational tools for this endeavor are standard candles: luminous sources
whose absolute luminosity has been properly calibrated. The most important ones, for
being the most accurate are: Cepheids (local distance scale, Freedman et al., 2001),
global properties of galaxies as The Fundamental Plane, the Faber-Jackson relation or
the Tully-Fisher relation (up to 300 Mpc, Sakai et al., 2000; Bernardi et al., 2002) &
Supernovas (large and very large scale, ~400 Mpc or more, Riess et al., 2007; Kowalski
et al., 2008). Also Sunyaev-Zel’dovich effect in clusters (Reese et al., 2002) and gravita-
tionally lensed images of distant quasars (Outram et al., 2004) are starting to give some
constrains on cosmological models. As observational methods improved we are capable
of reaching higher redshifts, mainly thanks to Supernova data, constraining Hg and
specially gy with lower errors. Last results can be seen in Kowalski et al. (2008). From
this work, here we show first a Hubble diagram C.1 and the cosmological constraints on

Qum, Qp obtained just from Supernova data.

Relating with the Hubble parameter, it is possible to learn a good deal about the
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past and future expansion of universe by simple inspecting Friedmann equations, even
without specifying a definite equation of state. Since at present R > 0 by definition,
% > () because what we see are redshifts and no blueshifts and as long as p+ 3p remains
positive, the acceleration R/R is negative. Therefore it follows that the curve of R(t)
versus ¢t must be concave, and must have reached R(¢) = 0 at some finite time in the
past. If we take R = 0 between this moment and now, we get that R(t) = R(to)t/to and
so the age of the universe would be just equal the Hubble time, H L If we take the more
realistic assumption of R < 0, we get a lower limit to the age of the Universe. ty must
be less than the Hubble time ¢y < H 1 So, in all Friedmann-Robertson-Walker models,
measuring the current value of Hubble parameter, Hy, also give us an idea of what is
the age of the universe. Therefore, for example, with Hy = 72 + 8km x sec™* x Mpc™!

(Freedman et al., 2001), we get a minimum age for our Universe of ¢y = 13,97Gyr.

C.4 Nucleosynthesis

Another important point which Big Bang model has to give some answer is the origin of
chemical elements and the abundances that we observe nowadays. G. Gamow was the
first to propose a Big Bang nucleosynthesis in the early 50’s, proposing some theoretical
abundances of light elements that fit incredibly well with observations and that have
suffered little variations since then. He also used the observed helium abundance to
predict the existence of relic radiation in the microwave band. However these predictions
require that, in order to match the observational data, the ratio of the number of baryons
per photon, 7, in the early Universe have a very low value. Since the discovery of the
3K background radiation (see next section) and the subsequent measure of this ratio,
Gamow’s ideas have been elaborated into one of the key ingredients of the big bang.
The very early Universe in the Big Bang Model is too hostile environment for nuclei.
When the temperature stays above a few MeV (typical nucleon binding energy) photons
will destroy any existing nuclei. Because of this reason, nucleosynthesis has to wait until
the Universe has cooled down enough, approximately below 0.1MeV. At this temper-
ature deuterons are able to survive transforming into helium. Finally some 7Li is also
formed. Why not higher nuclei? The reason is that the Universe is cooling down very
fast and Coulomb barriers are higher for heavier nuclei, making cross-sections decline
rapidly as temperature decreases. The heavier elements, of which we are partly made,
were created later in the interiors of stars and spread widely in supernova explosions.
The major interest of this theory is that it only needs one cosmological number, 7, the

number of baryons per photon

n= ni = 26821073 (h?) (C.25)
Y

where ny, is the density of baryons and n is the density of photons. €2 is the contribution
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of baryonic particles to total non-relativistic matter, 2, = €,,fp. In this sense Big
Bang Nucleosynthesis (BBN) gives us independent constrains on €, therefore on 2,,.
As we will see, the exact value of f; is not yet clear but it seems quite confirmed that
is not one (see below C.6). It is important to note that given 7, all the abundance
predictions are based in standard particle physic. Therefore, one feature of BBN is that
the physical laws and constants that govern the behavior of matter at these energies
are very well understood, and hence BBN lacks some of the speculative uncertainties
that characterize earlier periods in the life of the universe. Another feature is that the
process of nucleosynthesis is determined by conditions at the beginning of this period of
the life of the universe, making what happens before irrelevant. Theoretical calculations

for these nuclear processes predict abundances for: H, 2D, 3He, *He of *Li. One of
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Figure C.2: Nucleosynthesis abundance predictions. Abundance predictions in function
of 7, from Cyburt et al. (2003).

the most important, in terms of confirming Big Bang Model, is the abundance for *He.
Nucleosynthesis predicts that about a quarter of the Universe consists of He, a result
which is in great agreement with current stellar observations. We remit the reader to

Tocco et al. (2008) for a complete revision of the area and the last observational results.
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C.5 Existence of a Cosmic Microwave Background

Another important prediction of the Big Bang model, first addressed by Gamov (1946),
is the existence of a Cosmic Microwave Background (CMB). If the universe was once
very hot and dense, the photons and baryons would have formed a plasma, i.e., a gas
of ionized matter coupled to the radiation through the constant scattering of photons
off ions and electrons. As the universe expanded and cooled it comes a point when
the radiation (photons) decoupled from the matter. From this time onwards, radiation
was effectively unable to interact with the background gas; it has propagated freely ever
since, while constantly losing energy because its wavelength is stretched by the expansion
of the Universe. We can model the time last scattering by a visibility function, which
measures the probability that a particular photon last scattered in a redshift interval
dz. Conveniently, this proves to be well approximated by a Gaussian at mean redshift
z ~ 1100 with width Az = 80, pretty much independent of all cosmological parameters
(Jones & Wiyse, 1985). Originally, the radiation temperature was about 3000 degrees
Kelvin, whereas today it should has fallen to only 3K.

The CMB radiation was discovered in 1965, by Penzias and Wilson. Currently the
best information on the spectrum of the CMB comes from the FIRAS instrument on
the COBE satellite (Fixsen et al., 1996): CMB spectrum is that of a nearly perfect
blackbody with a temperature of 2.725 4+ 0.002 K (See C.3).
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Figure C.3: CMB: Black Body radiation. Measurements of the spectrum of CMB from
COBE satellite Fixsen et al. (1996).

This result shows that the temperature of the CMB is almost the same all over the
sky. Thus the microwave sky is extremely isotropic. But there is also a great deal to
be learned from this ”almost” and the distribution of microwave background in angle.
As we will see in the following section these anisotropies can be related with the for-
mation of galaxies and clusters. The origin of anisotropies can be due to a various set

of physical processes that: gravitational (Sachs Wolfe) perturbations, intrinsic (adia-
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batic) perturbations, velocity (Doppler) perturbations and scattering along line-of sight
(Rees-Sciama effect, Sunyaev-Zeldovich effect). For a further insight see e.g. Bond
et al. (1997). All these dependencies make the CMB fluctuations very dependent of
the cosmological model. The study of CMB fluctuations has subsequently blossomed
into a critical tool for pinning down cosmological models. As the CMB temperature
distribution in the sky, being a function defined on a sphere is most naturally analyzed

through a spherical harmonics expansion

im

The monopole component gives the mean temperature of CMB, 2.725 + 0.002. The
largest anisotropy is the ¢ = 1 dipole term interpreted as the result of the Doppler
shift caused by the Solar system motion relative to the CMB. Once the monopole and
the dipole have been removed from the expansion, we are left with the CMB intrinsic
anisotropies which are of the order of 1075, or below in all angular scales, and contain
the imprints of the early Universe physics at radiation-matter decoupling. Most of the
cosmological information is contained in the two point temperature-temperature (TT)
correlation function. This quantity is defined by averaging the product of the fractional
temperature deviations in directions 77 and n’ over the sky, and expanding the result in

Legendre polynomials

M;F(ﬁ) ATT( =y %CZPZ(COSH) (C.27)

=0

The expansion coefficients Cj, when represented as function of ¢ (more suitably log /)
give the so-called angular power spectrum which is the key function in comparing theory
with observations. Distinct physical processes (some at very different scales) are linked
with a specific range of C) coefficients. In this sense, a set of hypotheses on physical
processes lead to predictions on the values of C; coefficients, therefore predictions on
the power spectrum function. On the other hand we have that these processes are in-
trinsically related with cosmological parameters so, hypotheses just mentioned before
are hypotheses on the values of cosmological parameters. Therefore studying the power
spectrum is the way in which cosmological model can be deduced from CMB observa-
tions. A more complete description of physics contained in Cj can be found in Peacock
(1999).

Electron-photon Thomson scattering at the last scattering surface transforms anisotropies
into CMB photons polarization. The analysis of polarization leads to four new non-
vanishing two sky points correlation, with its corresponding angular spectra (TE power
spectrum). Inclusion of polarization measurements help to better constrain some of the

cosmological parameters, by probing the ionization history of the universe, therefore
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better constraining the optical depth at reionization and breaking degeneracies of this
with other parameters. The theoretical and observational analysis of these spectra lies
at the present frontier of CMB research (Komatsu et al., 2009).

The first map of CMB anisotropies was obtained with COBE satellite. After COBE
a series of ground and balloon based measurements: ARCHEOPS, BOOMERANG,
DASI, MAXIMA, VSA, CBI, ACBAR, have been carried out to improve the quality
of temperature anisotropies data. The most recent advance has been the five years
of operation results from NASA’s WMAP (Wilkinson Microwave Anisotropy Probe,
Dunkley et al., 2009; Komatsu et al., 2009). This work corresponds to a twofold full
coverage of sky and provides a much more precise anisotropies map and by itself it

definitely make some strong constrains on several cosmological parameters.

Parameter Mean (68% confidence range)
Total density Qiot 1.09f8:8§5
Dark energy density Qa 0.742 £ 0.030
Baryon density Qph? 0.0441 £ 0.0030
Hubble constant h 0.719;8:85?
Galaxy fluctuation amplitude  og 0.796 + 0.036

Table C.2: Cosmology from CMB anisotropies measured by WMAP. Recommended
parameters values derived from WMAP data only (Dunkley et al., 2009).

C.6 Formation of Large Scale Structure

Although the isotropic microwave background indicates that the universe in the past was
extraordinarily homogeneous, we know that the universe today is far from homogeneous:
there are regions in which matter is strongly clumped forming galaxies, clusters and even
larger structures, whereas at the same time, we can also find almost empty regions with
very low densities.

So, the standard Hot Big Bang model also provides a framework in which to under-
stand the collapse of matter to form galaxies and other large-scale structures observed
in the Universe today. These structures are expected to arise from very small primordial
inhomogeneities. When the temperature had fallen to such an extent that the energy
density of the Universe began to be dominated by massive particles, rather than the
light and other radiation which had predominated earlier, gravitational forces between
the massive particles could begin to take effects, so that any small perturbations in their

density would grow. These inhomogeneities can be characterized as

o(Z) o(7) _ @) =P (C.28)

p p
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where p is the average density of the Universe, and p(Z) is the density of the Universe
at the point Z, and they must have left some trace as temperature anisotropies in the

microwave background.

In the search of these traces a popular statistical characterization of inhomogeneities
in the distribution of cosmic structures is provided by a two-point correlation function, &,

which describes the expected excess fluctuations with respect to a uniform distribution:

£(r) = (0z05+7) (C.29)
where the symbol () indicates the average over all the pairs of points at separation r.

It is often convenient to consider building up a general field by superposition of

many modes. So density contrast is commonly expanded into a Fourier expansion

14 —ik-x
) = G / R (C.30)

5(k) = (‘1/) / e (C.31)

In this context we define the Fourier transform of £ as the power spectrum P(k)
P(k) = (|0[*) (C.32)

In earlier literature, attention normally was focused on determining the two point
correlation function, £(r). We have seen the definition of this for a continuous field
such as the matter-density distribution Equation (C.29), for a discrete field, such as a
collection of galaxy locations, the definition must be phrased more carefully. The galaxy
two-point correlation function 44 can be defined in terms of the probability of finding

two galaxies within small volumes dV; dVs a distance r apart:
Prob=n?(1+ &u(r)) dVidVsy (C.33)

where n is the mean galaxy number density. Notice that for a random distribution &gyq;(r)
is 0. One thing we have to keep in mind is that while we are measuring observable matter
what we really would like to know is about the distribution of all matter. There is no
a priori reason why galaxy distribution should be a good tracer of mass distribution
in the Universe. Indeed, observations show that it definitely cannot be; the correlation
functions for, to give an example, galaxies selected optically and galaxies selected in
the infrared are different and hence clearly cannot both trace the mass distribution
accurately. This effect is known as bias in the galaxy distribution, and it seriously
impairs our abilities to use it to constrain the matter spectrum. The statistical analysis

of galaxy bias is based on the key idea of peak biasing. In this scenario, galaxies are
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fairly rare objects forming from peaks in the matter distribution. The rarer the peaks,
probability of a peak being near another peak is enhanced (Bardeen et al., 1986).

Measuring the current Power Spectrum is one of the most challenging features in
modern cosmology. It tells us all that there is to know about statistical properties of
the density field. During last years scientist have done a great effort in improving the
accuracy of power spectrum measurements. Nowadays, for the power spectrum we have
a complete set of independent measurements that shows a general good agreement with
this scenario (Seljak et al., 2005; Massey et al., 2007; Komatsu et al., 2009).
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Figure C.4: Power Spectrum measurements. Measurement of the Power Spectrum from
a set of different observables: CMB, SDSS, Weak lensing and La Forest (Tegmark et al.,
2004). Solid line correspond to a €, = 0.28 h = 0.72 Q;/Q,, = 0.16 Universe.

The Dark Matter

CMB anisotropies not only confirm that in the total amount of matter that encloses the
Universe (~ 25% of the total energy), just ~ 20% is baryonic matter (see Table C.2).
The €y value obtained from CMB is also in concordance with the nucleosynthesis theory

(see Section C.4). Therefore everything point to a non baryonic dark matter to make
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the total of matter that observations require. Moreover we have more cosmological
probes. We know from measurements of the cosmic microwave background that the
Universe was extraordinarily homogeneous in the past. At the present epoch, however,
the Universe is no longer particularly homogeneous: it contains galaxies, clusters of
galaxies, superclusters etc. This large scale structure is believed to arise from small
primordial inhomogeneities that grow via gravitational instability. However ordinary
baryonic density perturbations cannot begin to grow because of radiation pressure until
photon decoupling occurs at a temperature of around Ty, ~ 3000K, corresponding to
a redshift of zg.. ~ 1100. But this is too late, perturbations which have amplitude of
order § ~ 107° (as inferred from the anisotropies of the cosmic microwave background)
do not have enough time to grow into galaxies, where § ~ 103~*. This suggests that
inhomogeneities begin to grow prior to photon decoupling. This is one role that non-
baryonic dark matter is expected to fill, it should be weakly coupled to the ordinary
particles in the plasma so that density perturbation growth can begin prior to photon
decoupling. In the context of the Big Bang Model is easy to think in a weekly interacting

relic particle to make the role of dark matter.

On the other hand, in addition of all these cosmological evidences, we have also some
solid astrophysical evidences. As dark matter consist in matter particles that cannot be
detected by their emitted radiation, its presence should be inferred from gravitational
effects on visible matter such as galaxies, groups and clusters. The first of all these
indirect proofs was made by Zwicky (1933) studying the velocity dispersions of Coma
Cluster and obtaining higher Mass-to-light ratios than expected if this object was just
formed by baryonic matter. This kind of study in clusters has been improved since then,
showing basically the same conclusions. Masses of clusters have been also calculated
from X-Ray Hot gas (Arnaud, 2005) and from gravitational lensing (Squires et al., 1996)
confirming this result. Also just analyzing total luminosity density values, and taking
into account a minimum limit for w,, (from nucleosynthesis, for example) leads us to
mass-to-light ratios that suggest the existence of some more matter than normal stellar
populations (Efstathiou & Rees, 1988). Another important evidence is the existence
of flat rotation curves in galaxies rather than the Keplerian fall-off rotation curve. An
example is showed in Figure C.5. More details can be found in (Corbelli & Salucci,
2000; Jimenez et al., 2003). See also (Romanowsky et al., 2003) for some surprising
results on this subject. There is also ample evidence for dark matter in dwarf galaxies
(Colin et al., 2004).

By all this, the existence of dark matter is a very solid state in modern cosmology.
However what particle, or particles, forms dark matter and which are their properties is
not a closed question. Although we can make some interesting constraints. As we just
mention dark matter has enormous implications in the formation of structures because it

determines the final density distribution at different scales. Taking into account this fact,
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Figure C.5: Rotation curve: Dark matter. This rotation curve implies that near 90%
of the galaxy mass cannot be seen. Figure from Foot (2004).

usually all particle candidates classify in three generic types: Hot Dark Matter (HDM),
Warm Dark Matter (WDM) and Cold Dark Matter (CDM). Hot dark matter would be
particles with very small mass (~ eV') that travel with relativistic velocities because they
would have decoupled from radiation when relativistic. Fast moving particles, however,
cannot clump together on small scales and, in fact, they can escape from overdense
regions into underdense ones, erasing the density fluctuations on scales smaller than
the free-streaming scale Ay,. Typical values are Ars ~ 40Mpc. In the hot dark matter
paradigm, popular in the early eighties, structure forms by fragmentation (top-down),
with the largest superclusters forming first in flat pancake-like sheets and subsequently
fragmenting into smaller pieces like our galaxy. On the opposite side, if the relic particles
decouple when they are nonrelativistic, mass can apparently be as large as desired. If
decoupling occurs at very high redshift, the horizon scale at that time is very small
and so negligible damping occurs through free streaming. Structure formation in a
CDM universe is then a hierarchical process in which nonlinear structures grow via
the merger of very small initial units. There is also a middle point approach known
as warm dark matter model originally introduced to solve some apparent problems
of the CDM model. To reduce the present-day velocity while retaining particles that
decouple when relativistic, or in other words, to retain low-mass particles ( 1 — 10keV)
while still allowing a short of hierarchical scenario. However latest observations go in
the direction of CDM model predictions (Bullock et al., 2000; Kochanek & Dalal, 2003;
Primack, 2004; Tegmark et al., 2004; Pratt & Arnaud, 2005; Pointecouteau et al., 2005).

Here we present Figure C.6.
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C.7 Conclusions

Through this Chapter we have presented a general view of the Big Bang Model and its
observational pillars. The union of these ideas conform what is known as the standard
cosmological model which, during last decades all observational data have consolidated.
But, although consolidated, we had a wide set of possible Universes very different one
from each other. In the past few years, with the advent of new generation of observa-
tional projects (WMAP, SN projects, Hubble telescope, SDSS, 2dF) we have entered
in what has been called ”precision cosmology”. In this new era we are being able of
ruling out false Universes by constraining all cosmological parameters. We have seen
that all these experiments, one by one and independently, offer results that consolidate
the standard model and reduce the number of possible Universes. The fact that all
these experiments agree in the most probable model is fascinating and has lead us to
what is call the concordance model. This model corresponds with a flat Universe, with
cosmological constant and formed by baryonic matter and cold dark matter. Combin-
ing results from the different experiments we can even achieve more precision in the
cosmological parameters (Dunkley et al., 2009; Komatsu et al., 2009). Table C.3 shows
best fit cosmological parameters using CMB (WMAP and small scale measurements),
SDSS and SNIa data:

Parameter Mean + 68% confidence range
Total density Q 1.0052 + 0.0064
Dark energy density QLambda 0.721 £0.015
Baryon density Qp 0.0462 £+ 0.0015
Optical depth T 0.084 + 0.016
Spectral index Ng 0.960f8:8%§
Galaxy fluctuation amplitude o) 0.817 £ 0.026
Hubble constant h 0.701 £ 0.013
Age of the Universe to (13.73 4 0.12)210° years

Table C.3: Some of the derived cosmological parameters using WMAP+SN+BAO data,
see Dunkley et al. (2009).

So we are living in a Lambda-Cold Dark Matter ACDM Universe. This model
is able to explain a huge amount of precise and independent observational data as
cosmic microwave background observations (WMAP), as well as large scale structure
observations (2dF,SDSS) and supernovae observations of the accelerating expansion
of the universe (SN). However, although ACDM model has been consolidated with
unexpected robustness and precision, there are still major open questions that need to
be answered and are far beyond the scope of this thesis. Some examples are, the origin
of the cosmological constant, the dark matter particle and the formation of the Hubble

sequence.






Appendix D

Data Tables

This Appendix presents all the fundamental structural and kinematical parameters of
the different ELO samples studied in this thesis. In Table D.1 parameters discussed
in Chapter 6 can be found. Table D.2 includes the shape and rotational parameters
considered in Chapter 7. Values for these variables at higher redshifts, examined in
Chapter 8, can be found in Tables D.3, D.4 (z = 0.5 ELO samples), D.5, D.6 (z = 1
ELO samples) and D.7, D.8 (z = 1.5 ELO samples).
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